Spaces:
Runtime error
Runtime error
File size: 9,456 Bytes
a220803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import random
import argparse
import cv2
from tqdm import tqdm
import numpy as np
import numpy.typing as npt
import torch
from decord import VideoReader, cpu
from torch.nn import functional as F
from pytorchvideo.transforms import ShortSideScale
from torchvision.transforms import Lambda, Compose
from torchvision.transforms._transforms_video import CenterCropVideo
import sys
from torch.utils.data import Dataset, DataLoader, Subset
import os
sys.path.append(".")
from opensora.models.ae.videobase import CausalVAEModel
import torch.nn as nn
def array_to_video(
image_array: npt.NDArray, fps: float = 30.0, output_file: str = "output_video.mp4"
) -> None:
height, width, channels = image_array[0].shape
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height))
for image in image_array:
image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
video_writer.write(image_rgb)
video_writer.release()
def custom_to_video(
x: torch.Tensor, fps: float = 2.0, output_file: str = "output_video.mp4"
) -> None:
x = x.detach().cpu()
x = torch.clamp(x, -1, 1)
x = (x + 1) / 2
x = x.permute(1, 2, 3, 0).float().numpy()
x = (255 * x).astype(np.uint8)
array_to_video(x, fps=fps, output_file=output_file)
return
def read_video(video_path: str, num_frames: int, sample_rate: int) -> torch.Tensor:
decord_vr = VideoReader(video_path, ctx=cpu(0), num_threads=8)
total_frames = len(decord_vr)
sample_frames_len = sample_rate * num_frames
if total_frames > sample_frames_len:
s = 0
e = s + sample_frames_len
num_frames = num_frames
else:
s = 0
e = total_frames
num_frames = int(total_frames / sample_frames_len * num_frames)
print(
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
video_path,
total_frames,
)
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
video_data = torch.from_numpy(video_data)
video_data = video_data.permute(3, 0, 1, 2) # (T, H, W, C) -> (C, T, H, W)
return video_data
class RealVideoDataset(Dataset):
def __init__(
self,
real_video_dir,
num_frames,
sample_rate=1,
crop_size=None,
resolution=128,
) -> None:
super().__init__()
self.real_video_files = self._combine_without_prefix(real_video_dir)
self.num_frames = num_frames
self.sample_rate = sample_rate
self.crop_size = crop_size
self.short_size = resolution
def __len__(self):
return len(self.real_video_files)
def __getitem__(self, index):
if index >= len(self):
raise IndexError
real_video_file = self.real_video_files[index]
real_video_tensor = self._load_video(real_video_file)
video_name = os.path.basename(real_video_file)
return {'video': real_video_tensor, 'file_name': video_name }
def _load_video(self, video_path):
num_frames = self.num_frames
sample_rate = self.sample_rate
decord_vr = VideoReader(video_path, ctx=cpu(0))
total_frames = len(decord_vr)
sample_frames_len = sample_rate * num_frames
if total_frames > sample_frames_len:
s = 0
e = s + sample_frames_len
num_frames = num_frames
else:
s = 0
e = total_frames
num_frames = int(total_frames / sample_frames_len * num_frames)
print(
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
video_path,
total_frames,
)
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
video_data = torch.from_numpy(video_data)
video_data = video_data.permute(3, 0, 1, 2)
return _preprocess(
video_data, short_size=self.short_size, crop_size=self.crop_size
)
def _combine_without_prefix(self, folder_path, prefix="."):
folder = []
for name in os.listdir(folder_path):
if name[0] == prefix:
continue
folder.append(os.path.join(folder_path, name))
folder.sort()
return folder
def resize(x, resolution):
height, width = x.shape[-2:]
aspect_ratio = width / height
if width <= height:
new_width = resolution
new_height = int(resolution / aspect_ratio)
else:
new_height = resolution
new_width = int(resolution * aspect_ratio)
resized_x = F.interpolate(x, size=(new_height, new_width), mode='bilinear', align_corners=True, antialias=True)
return resized_x
def _preprocess(video_data, short_size=128, crop_size=None):
transform = Compose(
[
Lambda(lambda x: ((x / 255.0) * 2 - 1)),
Lambda(lambda x: resize(x, short_size)),
(
CenterCropVideo(crop_size=crop_size)
if crop_size is not None
else Lambda(lambda x: x)
),
]
)
video_outputs = transform(video_data)
video_outputs = _format_video_shape(video_outputs)
return video_outputs
def _format_video_shape(video, time_compress=4, spatial_compress=8):
time = video.shape[1]
height = video.shape[2]
width = video.shape[3]
new_time = (
(time - (time - 1) % time_compress)
if (time - 1) % time_compress != 0
else time
)
new_height = (
(height - (height) % spatial_compress)
if height % spatial_compress != 0
else height
)
new_width = (
(width - (width) % spatial_compress) if width % spatial_compress != 0 else width
)
return video[:, :new_time, :new_height, :new_width]
@torch.no_grad()
def main(args: argparse.Namespace):
real_video_dir = args.real_video_dir
generated_video_dir = args.generated_video_dir
ckpt = args.ckpt
sample_rate = args.sample_rate
resolution = args.resolution
crop_size = args.crop_size
num_frames = args.num_frames
sample_rate = args.sample_rate
device = args.device
sample_fps = args.sample_fps
batch_size = args.batch_size
num_workers = args.num_workers
subset_size = args.subset_size
if not os.path.exists(args.generated_video_dir):
os.makedirs(args.generated_video_dir, exist_ok=True)
data_type = torch.bfloat16
# ---- Load Model ----
device = args.device
vqvae = CausalVAEModel.from_pretrained(args.ckpt)
vqvae = vqvae.to(device).to(data_type)
if args.enable_tiling:
vqvae.enable_tiling()
vqvae.tile_overlap_factor = args.tile_overlap_factor
# ---- Load Model ----
# ---- Prepare Dataset ----
dataset = RealVideoDataset(
real_video_dir=real_video_dir,
num_frames=num_frames,
sample_rate=sample_rate,
crop_size=crop_size,
resolution=resolution,
)
if subset_size:
indices = range(subset_size)
dataset = Subset(dataset, indices=indices)
dataloader = DataLoader(
dataset, batch_size=batch_size, pin_memory=True, num_workers=num_workers
)
# ---- Prepare Dataset
# ---- Inference ----
for batch in tqdm(dataloader):
x, file_names = batch['video'], batch['file_name']
x = x.to(device=device, dtype=data_type) # b c t h w
latents = vqvae.encode(x).sample().to(data_type)
video_recon = vqvae.decode(latents)
for idx, video in enumerate(video_recon):
output_path = os.path.join(generated_video_dir, file_names[idx])
if args.output_origin:
os.makedirs(os.path.join(generated_video_dir, "origin/"), exist_ok=True)
origin_output_path = os.path.join(generated_video_dir, "origin/", file_names[idx])
custom_to_video(
x[idx], fps=sample_fps / sample_rate, output_file=origin_output_path
)
custom_to_video(
video, fps=sample_fps / sample_rate, output_file=output_path
)
# ---- Inference ----
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--real_video_dir", type=str, default="")
parser.add_argument("--generated_video_dir", type=str, default="")
parser.add_argument("--ckpt", type=str, default="")
parser.add_argument("--sample_fps", type=int, default=30)
parser.add_argument("--resolution", type=int, default=336)
parser.add_argument("--crop_size", type=int, default=None)
parser.add_argument("--num_frames", type=int, default=17)
parser.add_argument("--sample_rate", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--subset_size", type=int, default=None)
parser.add_argument("--tile_overlap_factor", type=float, default=0.25)
parser.add_argument('--enable_tiling', action='store_true')
parser.add_argument('--output_origin', action='store_true')
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
main(args)
|