File size: 8,277 Bytes
a220803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
import os
import re
import html
import urllib.parse as ul

import ftfy
import torch
from bs4 import BeautifulSoup
from transformers import T5EncoderModel, AutoTokenizer
from huggingface_hub import hf_hub_download

class T5Embedder:

    available_models = ['t5-v1_1-xxl']
    bad_punct_regex = re.compile(r'['+'#®•©™&@·º½¾¿¡§~'+'\)'+'\('+'\]'+'\['+'\}'+'\{'+'\|'+'\\'+'\/'+'\*' + r']{1,}')  # noqa

    def __init__(self, device, dir_or_name='t5-v1_1-xxl', *, cache_dir='./cache_dir', hf_token=None, use_text_preprocessing=True,
                 t5_model_kwargs=None, torch_dtype=None, model_max_length=120):
        self.device = torch.device(device)
        self.torch_dtype = torch_dtype or torch.bfloat16
        if t5_model_kwargs is None:
            t5_model_kwargs = {'low_cpu_mem_usage': True, 'torch_dtype': self.torch_dtype}
            t5_model_kwargs['device_map'] = {'shared': self.device, 'encoder': self.device}

        self.use_text_preprocessing = use_text_preprocessing
        self.hf_token = hf_token
        self.cache_dir = cache_dir
        self.dir_or_name = dir_or_name
        cache_dir = os.path.join(self.cache_dir, 't5-v1_1-xxl')
        for filename in ['config.json', 'special_tokens_map.json', 'spiece.model', 'tokenizer_config.json',
                         'pytorch_model-00001-of-00002.bin', 'pytorch_model-00002-of-00002.bin', 'pytorch_model.bin.index.json']:
            hf_hub_download(repo_id='DeepFloyd/t5-v1_1-xxl', filename=filename, cache_dir=cache_dir,
                            force_filename=filename, token=self.hf_token)

        print(cache_dir)
        self.tokenizer = AutoTokenizer.from_pretrained(cache_dir)
        self.model = T5EncoderModel.from_pretrained(cache_dir, **t5_model_kwargs).eval()
        self.model_max_length = model_max_length

    def get_text_embeddings(self, texts):
        texts = [self.text_preprocessing(text) for text in texts]

        text_tokens_and_mask = self.tokenizer(
            texts,
            max_length=self.model_max_length,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            add_special_tokens=True,
            return_tensors='pt'
        )

        text_tokens_and_mask['input_ids'] = text_tokens_and_mask['input_ids']
        text_tokens_and_mask['attention_mask'] = text_tokens_and_mask['attention_mask']

        with torch.no_grad():
            text_encoder_embs = self.model(
                input_ids=text_tokens_and_mask['input_ids'].to(self.device),
                attention_mask=text_tokens_and_mask['attention_mask'].to(self.device),
            )['last_hidden_state'].detach()
        return text_encoder_embs, text_tokens_and_mask['attention_mask'].to(self.device)

    def text_preprocessing(self, text):
        if self.use_text_preprocessing:
            # The exact text cleaning as was in the training stage:
            text = self.clean_caption(text)
            text = self.clean_caption(text)
            return text
        else:
            return text.lower().strip()

    @staticmethod
    def basic_clean(text):
        text = ftfy.fix_text(text)
        text = html.unescape(html.unescape(text))
        return text.strip()

    def clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub('<person>', 'person', caption)
        # urls:
        caption = re.sub(
            r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',  # noqa
            '', caption)  # regex for urls
        caption = re.sub(
            r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',  # noqa
            '', caption)  # regex for urls
        # html:
        caption = BeautifulSoup(caption, features='html.parser').text

        # @<nickname>
        caption = re.sub(r'@[\w\d]+\b', '', caption)

        # 31C0—31EF CJK Strokes
        # 31F0—31FF Katakana Phonetic Extensions
        # 3200—32FF Enclosed CJK Letters and Months
        # 3300—33FF CJK Compatibility
        # 3400—4DBF CJK Unified Ideographs Extension A
        # 4DC0—4DFF Yijing Hexagram Symbols
        # 4E00—9FFF CJK Unified Ideographs
        caption = re.sub(r'[\u31c0-\u31ef]+', '', caption)
        caption = re.sub(r'[\u31f0-\u31ff]+', '', caption)
        caption = re.sub(r'[\u3200-\u32ff]+', '', caption)
        caption = re.sub(r'[\u3300-\u33ff]+', '', caption)
        caption = re.sub(r'[\u3400-\u4dbf]+', '', caption)
        caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption)
        caption = re.sub(r'[\u4e00-\u9fff]+', '', caption)
        #######################################################

        # все виды тире / all types of dash --> "-"
        caption = re.sub(
            r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+',  # noqa
            '-', caption)

        # кавычки к одному стандарту
        caption = re.sub(r'[`´«»“”¨]', '"', caption)
        caption = re.sub(r'[‘’]', "'", caption)

        # &quot;
        caption = re.sub(r'&quot;?', '', caption)
        # &amp
        caption = re.sub(r'&amp', '', caption)

        # ip adresses:
        caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption)

        # article ids:
        caption = re.sub(r'\d:\d\d\s+$', '', caption)

        # \n
        caption = re.sub(r'\\n', ' ', caption)

        # "#123"
        caption = re.sub(r'#\d{1,3}\b', '', caption)
        # "#12345.."
        caption = re.sub(r'#\d{5,}\b', '', caption)
        # "123456.."
        caption = re.sub(r'\b\d{6,}\b', '', caption)
        # filenames:
        caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption)

        #
        caption = re.sub(r'[\"\']{2,}', r'"', caption)  # """AUSVERKAUFT"""
        caption = re.sub(r'[\.]{2,}', r' ', caption)  # """AUSVERKAUFT"""

        caption = re.sub(self.bad_punct_regex, r' ', caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
        caption = re.sub(r'\s+\.\s+', r' ', caption)  # " . "

        # this-is-my-cute-cat / this_is_my_cute_cat
        regex2 = re.compile(r'(?:\-|\_)')
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, ' ', caption)

        caption = self.basic_clean(caption)

        caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption)  # jc6640
        caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption)  # jc6640vc
        caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption)  # 6640vc231

        caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption)
        caption = re.sub(r'(free\s)?download(\sfree)?', '', caption)
        caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption)
        caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption)
        caption = re.sub(r'\bpage\s+\d+\b', '', caption)

        caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption)  # j2d1a2a...

        caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption)

        caption = re.sub(r'\b\s+\:\s+', r': ', caption)
        caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption)
        caption = re.sub(r'\s+', ' ', caption)

        caption.strip()

        caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption)
        caption = re.sub(r'^[\'\_,\-\:;]', r'', caption)
        caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption)
        caption = re.sub(r'^\.\S+$', '', caption)

        return caption.strip()

if __name__ == '__main__':
    t5 = T5Embedder(device="cuda", cache_dir='./cache_dir', torch_dtype=torch.float)
    device = t5.device
    prompts = ['I am a test caption', 'Test twice']
    with torch.no_grad():
        caption_embs, emb_masks = t5.get_text_embeddings(prompts)
        emb_dict = {
            'caption_feature': caption_embs.float().cpu().data.numpy(),
            'attention_mask': emb_masks.cpu().data.numpy(),
        }
    import ipdb;ipdb.set_trace()
    print()