File size: 5,608 Bytes
a220803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import math
import random
import argparse
from typing import Optional

import cv2
import numpy as np
import numpy.typing as npt
import torch
from PIL import Image
from decord import VideoReader, cpu
from torch.nn import functional as F
from pytorchvideo.transforms import ShortSideScale
from torchvision.transforms import Lambda, Compose

import sys
sys.path.append(".")
from opensora.dataset.transform import CenterCropVideo, resize
from opensora.models.ae.videobase import CausalVAEModel


def array_to_video(image_array: npt.NDArray, fps: float = 30.0, output_file: str = 'output_video.mp4') -> None:
    height, width, channels = image_array[0].shape
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height))

    for image in image_array:
        image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        video_writer.write(image_rgb)

    video_writer.release()

def custom_to_video(x: torch.Tensor, fps: float = 2.0, output_file: str = 'output_video.mp4') -> None:
    x = x.detach().cpu()
    x = torch.clamp(x, -1, 1)
    x = (x + 1) / 2
    x = x.permute(1, 2, 3, 0).numpy()
    x = (255*x).astype(np.uint8)
    array_to_video(x, fps=fps, output_file=output_file)
    return

def read_video(video_path: str, num_frames: int, sample_rate: int) -> torch.Tensor:
    decord_vr = VideoReader(video_path, ctx=cpu(0))
    total_frames = len(decord_vr)
    sample_frames_len = sample_rate * num_frames

    if total_frames > sample_frames_len:
        s = random.randint(0, total_frames - sample_frames_len - 1)
        s = 0
        e = s + sample_frames_len
        num_frames = num_frames
    else:
        s = 0
        e = total_frames
        num_frames = int(total_frames / sample_frames_len * num_frames)
        print(f'sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}', video_path,
              total_frames)


    frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
    video_data = decord_vr.get_batch(frame_id_list).asnumpy()
    video_data = torch.from_numpy(video_data)
    video_data = video_data.permute(3, 0, 1, 2)  # (T, H, W, C) -> (C, T, H, W)
    return video_data


class ResizeVideo:
    def __init__(
            self,
            size,
            interpolation_mode="bilinear",
    ):
        self.size = size

        self.interpolation_mode = interpolation_mode

    def __call__(self, clip):
        _, _, h, w = clip.shape
        if w < h:
            new_h = int(math.floor((float(h) / w) * self.size))
            new_w = self.size
        else:
            new_h = self.size
            new_w = int(math.floor((float(w) / h) * self.size))
        return torch.nn.functional.interpolate(
            clip, size=(new_h, new_w), mode=self.interpolation_mode, align_corners=False, antialias=True
        )

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"

def preprocess(video_data: torch.Tensor, short_size: int = 128, crop_size: Optional[int] = None) -> torch.Tensor:

    transform = Compose(
        [
            Lambda(lambda x: ((x / 255.0) * 2 - 1)),
            ResizeVideo(size=short_size),
            CenterCropVideo(crop_size) if crop_size is not None else Lambda(lambda x: x),
        ]
    )

    video_outputs = transform(video_data)
    video_outputs = torch.unsqueeze(video_outputs, 0)

    return video_outputs


def main(args: argparse.Namespace):
    video_path = args.video_path
    num_frames = args.num_frames
    resolution = args.resolution
    crop_size = args.crop_size
    sample_fps = args.sample_fps
    sample_rate = args.sample_rate
    device = args.device
    vqvae = CausalVAEModel.from_pretrained(args.ckpt)
    if args.enable_tiling:
        vqvae.enable_tiling()
        vqvae.tile_overlap_factor = args.tile_overlap_factor
    vqvae.eval()
    vqvae = vqvae.to(device)
    vqvae = vqvae # .to(torch.float16)

    with torch.no_grad():
        x_vae = preprocess(read_video(video_path, num_frames, sample_rate), resolution, crop_size)
        x_vae = x_vae.to(device)  # b c t h w
        x_vae = x_vae # .to(torch.float16)
        latents = vqvae.encode(x_vae).sample() # .to(torch.float16)
        video_recon = vqvae.decode(latents)
        
    if video_recon.shape[2] == 1:
        x = video_recon[0, :, 0, :, :]
        x = x.squeeze()
        x = x.detach().cpu().numpy()
        x = np.clip(x, -1, 1)
        x = (x + 1) / 2
        x = (255 * x).astype(np.uint8)
        x = x.transpose(1, 2, 0)
        image = Image.fromarray(x)
        image.save(args.rec_path.replace('mp4', 'jpg'))
    else:
        custom_to_video(video_recon[0], fps=sample_fps/sample_rate, output_file=args.rec_path)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--video-path', type=str, default='')
    parser.add_argument('--rec-path', type=str, default='')
    parser.add_argument('--ckpt', type=str, default='results/pretrained')
    parser.add_argument('--sample-fps', type=int, default=30)
    parser.add_argument('--resolution', type=int, default=336)
    parser.add_argument('--crop-size', type=int, default=None)
    parser.add_argument('--num-frames', type=int, default=100)
    parser.add_argument('--sample-rate', type=int, default=1)
    parser.add_argument('--device', type=str, default="cuda")
    parser.add_argument('--tile_overlap_factor', type=float, default=0.25)
    parser.add_argument('--enable_tiling', action='store_true')
    
    args = parser.parse_args()
    main(args)