Spaces:
Runtime error
Runtime error
File size: 3,070 Bytes
a220803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import math
import os
import decord
import numpy as np
import torch
import torchvision
from decord import VideoReader, cpu
from torch.utils.data import Dataset
from torchvision.transforms import Compose, Lambda, ToTensor
from torchvision.transforms._transforms_video import NormalizeVideo, RandomCropVideo, RandomHorizontalFlipVideo
from pytorchvideo.transforms import ApplyTransformToKey, ShortSideScale, UniformTemporalSubsample
from torch.nn import functional as F
import random
from opensora.utils.dataset_utils import DecordInit
class UCF101(Dataset):
def __init__(self, args, transform, temporal_sample):
self.data_path = args.data_path
self.num_frames = args.num_frames
self.transform = transform
self.temporal_sample = temporal_sample
self.v_decoder = DecordInit()
self.classes = sorted(os.listdir(self.data_path))
self.class_to_idx = {cls_name: idx for idx, cls_name in enumerate(self.classes)}
self.samples = self._make_dataset()
def _make_dataset(self):
dataset = []
for class_name in self.classes:
class_path = os.path.join(self.data_path, class_name)
for fname in os.listdir(class_path):
if fname.endswith('.avi'):
item = (os.path.join(class_path, fname), self.class_to_idx[class_name])
dataset.append(item)
return dataset
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
video_path, label = self.samples[idx]
try:
video = self.tv_read(video_path)
video = self.transform(video) # T C H W -> T C H W
video = video.transpose(0, 1) # T C H W -> C T H W
return video, label
except Exception as e:
print(f'Error with {e}, {video_path}')
return self.__getitem__(random.randint(0, self.__len__()-1))
def tv_read(self, path):
vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='TCHW')
total_frames = len(vframes)
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
# assert end_frame_ind - start_frame_ind >= self.num_frames
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int)
video = vframes[frame_indice] # (T, C, H, W)
return video
def decord_read(self, path):
decord_vr = self.v_decoder(path)
total_frames = len(decord_vr)
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
# assert end_frame_ind - start_frame_ind >= self.num_frames
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int)
video_data = decord_vr.get_batch(frame_indice).asnumpy()
video_data = torch.from_numpy(video_data)
video_data = video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (T C H W)
return video_data
|