Spaces:
Runtime error
Runtime error
File size: 6,507 Bytes
a220803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
from collections import namedtuple
import torch
from torchvision import models as tv
class squeezenet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(squeezenet, self).__init__()
pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.slice6 = torch.nn.Sequential()
self.slice7 = torch.nn.Sequential()
self.N_slices = 7
for x in range(2):
self.slice1.add_module(str(x), pretrained_features[x])
for x in range(2,5):
self.slice2.add_module(str(x), pretrained_features[x])
for x in range(5, 8):
self.slice3.add_module(str(x), pretrained_features[x])
for x in range(8, 10):
self.slice4.add_module(str(x), pretrained_features[x])
for x in range(10, 11):
self.slice5.add_module(str(x), pretrained_features[x])
for x in range(11, 12):
self.slice6.add_module(str(x), pretrained_features[x])
for x in range(12, 13):
self.slice7.add_module(str(x), pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1 = h
h = self.slice2(h)
h_relu2 = h
h = self.slice3(h)
h_relu3 = h
h = self.slice4(h)
h_relu4 = h
h = self.slice5(h)
h_relu5 = h
h = self.slice6(h)
h_relu6 = h
h = self.slice7(h)
h_relu7 = h
vgg_outputs = namedtuple("SqueezeOutputs", ['relu1','relu2','relu3','relu4','relu5','relu6','relu7'])
out = vgg_outputs(h_relu1,h_relu2,h_relu3,h_relu4,h_relu5,h_relu6,h_relu7)
return out
class alexnet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(alexnet, self).__init__()
alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(2):
self.slice1.add_module(str(x), alexnet_pretrained_features[x])
for x in range(2, 5):
self.slice2.add_module(str(x), alexnet_pretrained_features[x])
for x in range(5, 8):
self.slice3.add_module(str(x), alexnet_pretrained_features[x])
for x in range(8, 10):
self.slice4.add_module(str(x), alexnet_pretrained_features[x])
for x in range(10, 12):
self.slice5.add_module(str(x), alexnet_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1 = h
h = self.slice2(h)
h_relu2 = h
h = self.slice3(h)
h_relu3 = h
h = self.slice4(h)
h_relu4 = h
h = self.slice5(h)
h_relu5 = h
alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5'])
out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
return out
class vgg16(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(vgg16, self).__init__()
vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(23, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1_2 = h
h = self.slice2(h)
h_relu2_2 = h
h = self.slice3(h)
h_relu3_3 = h
h = self.slice4(h)
h_relu4_3 = h
h = self.slice5(h)
h_relu5_3 = h
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
return out
class resnet(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True, num=18):
super(resnet, self).__init__()
if(num==18):
self.net = tv.resnet18(pretrained=pretrained)
elif(num==34):
self.net = tv.resnet34(pretrained=pretrained)
elif(num==50):
self.net = tv.resnet50(pretrained=pretrained)
elif(num==101):
self.net = tv.resnet101(pretrained=pretrained)
elif(num==152):
self.net = tv.resnet152(pretrained=pretrained)
self.N_slices = 5
self.conv1 = self.net.conv1
self.bn1 = self.net.bn1
self.relu = self.net.relu
self.maxpool = self.net.maxpool
self.layer1 = self.net.layer1
self.layer2 = self.net.layer2
self.layer3 = self.net.layer3
self.layer4 = self.net.layer4
def forward(self, X):
h = self.conv1(X)
h = self.bn1(h)
h = self.relu(h)
h_relu1 = h
h = self.maxpool(h)
h = self.layer1(h)
h_conv2 = h
h = self.layer2(h)
h_conv3 = h
h = self.layer3(h)
h_conv4 = h
h = self.layer4(h)
h_conv5 = h
outputs = namedtuple("Outputs", ['relu1','conv2','conv3','conv4','conv5'])
out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
return out
|