File size: 14,562 Bytes
a220803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import torch as th
import numpy as np
import logging

import enum

from . import path
from .utils import EasyDict, log_state, mean_flat
from .integrators import ode, sde

class ModelType(enum.Enum):
    """
    Which type of output the model predicts.
    """

    NOISE = enum.auto()  # the model predicts epsilon
    SCORE = enum.auto()  # the model predicts \nabla \log p(x)
    VELOCITY = enum.auto()  # the model predicts v(x)

class PathType(enum.Enum):
    """
    Which type of path to use.
    """

    LINEAR = enum.auto()
    GVP = enum.auto()
    VP = enum.auto()

class WeightType(enum.Enum):
    """
    Which type of weighting to use.
    """

    NONE = enum.auto()
    VELOCITY = enum.auto()
    LIKELIHOOD = enum.auto()


class Transport:

    def __init__(
        self,
        *,
        model_type,
        path_type,
        loss_type,
        train_eps,
        sample_eps,
    ):
        path_options = {
            PathType.LINEAR: path.ICPlan,
            PathType.GVP: path.GVPCPlan,
            PathType.VP: path.VPCPlan,
        }

        self.loss_type = loss_type
        self.model_type = model_type
        self.path_sampler = path_options[path_type]()
        self.train_eps = train_eps
        self.sample_eps = sample_eps

    def prior_logp(self, z):
        '''
            Standard multivariate normal prior
            Assume z is batched
        '''
        shape = th.tensor(z.size())
        N = th.prod(shape[1:])
        _fn = lambda x: -N / 2. * np.log(2 * np.pi) - th.sum(x ** 2) / 2.
        return th.vmap(_fn)(z)
    

    def check_interval(
        self, 
        train_eps, 
        sample_eps, 
        *, 
        diffusion_form="SBDM",
        sde=False, 
        reverse=False, 
        eval=False,
        last_step_size=0.0,
    ):
        t0 = 0
        t1 = 1
        eps = train_eps if not eval else sample_eps
        if (type(self.path_sampler) in [path.VPCPlan]):

            t1 = 1 - eps if (not sde or last_step_size == 0) else 1 - last_step_size

        elif (type(self.path_sampler) in [path.ICPlan, path.GVPCPlan]) \
            and (self.model_type != ModelType.VELOCITY or sde): # avoid numerical issue by taking a first semi-implicit step

            t0 = eps if (diffusion_form == "SBDM" and sde) or self.model_type != ModelType.VELOCITY else 0
            t1 = 1 - eps if (not sde or last_step_size == 0) else 1 - last_step_size
        
        if reverse:
            t0, t1 = 1 - t0, 1 - t1

        return t0, t1


    def sample(self, x1):
        """Sampling x0 & t based on shape of x1 (if needed)
          Args:
            x1 - data point; [batch, *dim]
        """
        
        x0 = th.randn_like(x1)
        t0, t1 = self.check_interval(self.train_eps, self.sample_eps)
        t = th.rand((x1.shape[0],)) * (t1 - t0) + t0
        t = t.to(x1)
        return t, x0, x1
    

    def training_losses(
        self, 
        model,  
        x1, 
        model_kwargs=None
    ):
        """Loss for training the score model
        Args:
        - model: backbone model; could be score, noise, or velocity
        - x1: datapoint
        - model_kwargs: additional arguments for the model
        """
        if model_kwargs == None:
            model_kwargs = {}
        
        t, x0, x1 = self.sample(x1)
        t, xt, ut = self.path_sampler.plan(t, x0, x1)
        model_output = model(xt, t, **model_kwargs)
        B, *_, C = xt.shape
        assert model_output.size() == (B, *xt.size()[1:-1], C)

        terms = {}
        terms['pred'] = model_output
        if self.model_type == ModelType.VELOCITY:
            terms['loss'] = mean_flat(((model_output - ut) ** 2))
        else: 
            _, drift_var = self.path_sampler.compute_drift(xt, t)
            sigma_t, _ = self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, xt))
            if self.loss_type in [WeightType.VELOCITY]:
                weight = (drift_var / sigma_t) ** 2
            elif self.loss_type in [WeightType.LIKELIHOOD]:
                weight = drift_var / (sigma_t ** 2)
            elif self.loss_type in [WeightType.NONE]:
                weight = 1
            else:
                raise NotImplementedError()
            
            if self.model_type == ModelType.NOISE:
                terms['loss'] = mean_flat(weight * ((model_output - x0) ** 2))
            else:
                terms['loss'] = mean_flat(weight * ((model_output * sigma_t + x0) ** 2))
                
        return terms
    

    def get_drift(
        self
    ):
        """member function for obtaining the drift of the probability flow ODE"""
        def score_ode(x, t, model, **model_kwargs):
            drift_mean, drift_var = self.path_sampler.compute_drift(x, t)
            model_output = model(x, t, **model_kwargs)
            return (-drift_mean + drift_var * model_output) # by change of variable
        
        def noise_ode(x, t, model, **model_kwargs):
            drift_mean, drift_var = self.path_sampler.compute_drift(x, t)
            sigma_t, _ = self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, x))
            model_output = model(x, t, **model_kwargs)
            score = model_output / -sigma_t
            return (-drift_mean + drift_var * score)
        
        def velocity_ode(x, t, model, **model_kwargs):
            model_output = model(x, t, **model_kwargs)
            return model_output

        if self.model_type == ModelType.NOISE:
            drift_fn = noise_ode
        elif self.model_type == ModelType.SCORE:
            drift_fn = score_ode
        else:
            drift_fn = velocity_ode
        
        def body_fn(x, t, model, **model_kwargs):
            model_output = drift_fn(x, t, model, **model_kwargs)
            assert model_output.shape == x.shape, "Output shape from ODE solver must match input shape"
            return model_output

        return body_fn
    

    def get_score(
        self,
    ):
        """member function for obtaining score of 
            x_t = alpha_t * x + sigma_t * eps"""
        if self.model_type == ModelType.NOISE:
            score_fn = lambda x, t, model, **kwargs: model(x, t, **kwargs) / -self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, x))[0]
        elif self.model_type == ModelType.SCORE:
            score_fn = lambda x, t, model, **kwagrs: model(x, t, **kwagrs)
        elif self.model_type == ModelType.VELOCITY:
            score_fn = lambda x, t, model, **kwargs: self.path_sampler.get_score_from_velocity(model(x, t, **kwargs), x, t)
        else:
            raise NotImplementedError()
        
        return score_fn


class Sampler:
    """Sampler class for the transport model"""
    def __init__(
        self,
        transport,
    ):
        """Constructor for a general sampler; supporting different sampling methods
        Args:
        - transport: an tranport object specify model prediction & interpolant type
        """
        
        self.transport = transport
        self.drift = self.transport.get_drift()
        self.score = self.transport.get_score()
    
    def __get_sde_diffusion_and_drift(
        self,
        *,
        diffusion_form="SBDM",
        diffusion_norm=1.0,
    ):

        def diffusion_fn(x, t):
            diffusion = self.transport.path_sampler.compute_diffusion(x, t, form=diffusion_form, norm=diffusion_norm)
            return diffusion
        
        sde_drift = \
            lambda x, t, model, **kwargs: \
                self.drift(x, t, model, **kwargs) + diffusion_fn(x, t) * self.score(x, t, model, **kwargs)
    
        sde_diffusion = diffusion_fn

        return sde_drift, sde_diffusion
    
    def __get_last_step(
        self,
        sde_drift,
        *,
        last_step,
        last_step_size,
    ):
        """Get the last step function of the SDE solver"""
    
        if last_step is None:
            last_step_fn = \
                lambda x, t, model, **model_kwargs: \
                    x
        elif last_step == "Mean":
            last_step_fn = \
                lambda x, t, model, **model_kwargs: \
                    x + sde_drift(x, t, model, **model_kwargs) * last_step_size
        elif last_step == "Tweedie":
            alpha = self.transport.path_sampler.compute_alpha_t # simple aliasing; the original name was too long
            sigma = self.transport.path_sampler.compute_sigma_t
            last_step_fn = \
                lambda x, t, model, **model_kwargs: \
                    x / alpha(t)[0][0] + (sigma(t)[0][0] ** 2) / alpha(t)[0][0] * self.score(x, t, model, **model_kwargs)
        elif last_step == "Euler":
            last_step_fn = \
                lambda x, t, model, **model_kwargs: \
                    x + self.drift(x, t, model, **model_kwargs) * last_step_size
        else:
            raise NotImplementedError()

        return last_step_fn

    def sample_sde(
        self,
        *,
        sampling_method="Euler",
        diffusion_form="SBDM",
        diffusion_norm=1.0,
        last_step="Mean",
        last_step_size=0.04,
        num_steps=250,
    ):
        """returns a sampling function with given SDE settings
        Args:
        - sampling_method: type of sampler used in solving the SDE; default to be Euler-Maruyama
        - diffusion_form: function form of diffusion coefficient; default to be matching SBDM
        - diffusion_norm: function magnitude of diffusion coefficient; default to 1
        - last_step: type of the last step; default to identity
        - last_step_size: size of the last step; default to match the stride of 250 steps over [0,1]
        - num_steps: total integration step of SDE
        """

        if last_step is None:
            last_step_size = 0.0

        sde_drift, sde_diffusion = self.__get_sde_diffusion_and_drift(
            diffusion_form=diffusion_form,
            diffusion_norm=diffusion_norm,
        )

        t0, t1 = self.transport.check_interval(
            self.transport.train_eps,
            self.transport.sample_eps,
            diffusion_form=diffusion_form,
            sde=True,
            eval=True,
            reverse=False,
            last_step_size=last_step_size,
        )

        _sde = sde(
            sde_drift,
            sde_diffusion,
            t0=t0,
            t1=t1,
            num_steps=num_steps,
            sampler_type=sampling_method
        )

        last_step_fn = self.__get_last_step(sde_drift, last_step=last_step, last_step_size=last_step_size)
            

        def _sample(init, model, **model_kwargs):
            xs = _sde.sample(init, model, **model_kwargs)
            ts = th.ones(init.size(0), device=init.device) * t1
            x = last_step_fn(xs[-1], ts, model, **model_kwargs)
            xs.append(x)

            assert len(xs) == num_steps, "Samples does not match the number of steps"

            return xs

        return _sample
    
    def sample_ode(
        self,
        *,
        sampling_method="dopri5",
        num_steps=50,
        atol=1e-6,
        rtol=1e-3,
        reverse=False,
    ):
        """returns a sampling function with given ODE settings
        Args:
        - sampling_method: type of sampler used in solving the ODE; default to be Dopri5
        - num_steps: 
            - fixed solver (Euler, Heun): the actual number of integration steps performed
            - adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
        - atol: absolute error tolerance for the solver
        - rtol: relative error tolerance for the solver
        - reverse: whether solving the ODE in reverse (data to noise); default to False
        """
        if reverse:
            drift = lambda x, t, model, **kwargs: self.drift(x, th.ones_like(t) * (1 - t), model, **kwargs)
        else:
            drift = self.drift

        t0, t1 = self.transport.check_interval(
            self.transport.train_eps,
            self.transport.sample_eps,
            sde=False,
            eval=True,
            reverse=reverse,
            last_step_size=0.0,
        )

        _ode = ode(
            drift=drift,
            t0=t0,
            t1=t1,
            sampler_type=sampling_method,
            num_steps=num_steps,
            atol=atol,
            rtol=rtol,
        )
        
        return _ode.sample

    def sample_ode_likelihood(
        self,
        *,
        sampling_method="dopri5",
        num_steps=50,
        atol=1e-6,
        rtol=1e-3,
    ):
        
        """returns a sampling function for calculating likelihood with given ODE settings
        Args:
        - sampling_method: type of sampler used in solving the ODE; default to be Dopri5
        - num_steps: 
            - fixed solver (Euler, Heun): the actual number of integration steps performed
            - adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
        - atol: absolute error tolerance for the solver
        - rtol: relative error tolerance for the solver
        """
        def _likelihood_drift(x, t, model, **model_kwargs):
            x, _ = x
            eps = th.randint(2, x.size(), dtype=th.float, device=x.device) * 2 - 1
            t = th.ones_like(t) * (1 - t)
            with th.enable_grad():
                x.requires_grad = True
                grad = th.autograd.grad(th.sum(self.drift(x, t, model, **model_kwargs) * eps), x)[0]
                logp_grad = th.sum(grad * eps, dim=tuple(range(1, len(x.size()))))
                drift = self.drift(x, t, model, **model_kwargs)
            return (-drift, logp_grad)
        
        t0, t1 = self.transport.check_interval(
            self.transport.train_eps,
            self.transport.sample_eps,
            sde=False,
            eval=True,
            reverse=False,
            last_step_size=0.0,
        )

        _ode = ode(
            drift=_likelihood_drift,
            t0=t0,
            t1=t1,
            sampler_type=sampling_method,
            num_steps=num_steps,
            atol=atol,
            rtol=rtol,
        )

        def _sample_fn(x, model, **model_kwargs):
            init_logp = th.zeros(x.size(0)).to(x)
            input = (x, init_logp)
            drift, delta_logp = _ode.sample(input, model, **model_kwargs)
            drift, delta_logp = drift[-1], delta_logp[-1]
            prior_logp = self.transport.prior_logp(drift)
            logp = prior_logp - delta_logp
            return logp, drift

        return _sample_fn