Spaces:
Runtime error
Runtime error
File size: 5,415 Bytes
a220803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# croco: https://github.com/naver/croco
# diffusers: https://github.com/huggingface/diffusers
# --------------------------------------------------------
# Position embedding utils
# --------------------------------------------------------
import numpy as np
import torch
def get_2d_sincos_pos_embed(
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
"""
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed(
embed_dim, length, interpolation_scale=1.0, base_size=16
):
pos = torch.arange(0, length).unsqueeze(1) / interpolation_scale
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, pos)
return pos_embed
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
# ----------------------------------------------------------
# RoPE2D: RoPE implementation in 2D
# ----------------------------------------------------------
try:
from .curope import cuRoPE2D
RoPE2D = cuRoPE2D
except ImportError:
print('Warning, cannot find cuda-compiled version of RoPE2D, using a slow pytorch version instead')
class RoPE2D(torch.nn.Module):
def __init__(self, freq=100.0, F0=1.0):
super().__init__()
self.base = freq
self.F0 = F0
self.cache = {}
def get_cos_sin(self, D, seq_len, device, dtype):
if (D, seq_len, device, dtype) not in self.cache:
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D))
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
freqs = torch.cat((freqs, freqs), dim=-1)
cos = freqs.cos() # (Seq, Dim)
sin = freqs.sin()
self.cache[D, seq_len, device, dtype] = (cos, sin)
return self.cache[D, seq_len, device, dtype]
@staticmethod
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rope1d(self, tokens, pos1d, cos, sin):
assert pos1d.ndim == 2
cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :]
sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :]
return (tokens * cos) + (self.rotate_half(tokens) * sin)
def forward(self, tokens, positions):
"""
input:
* tokens: batch_size x nheads x ntokens x dim
* positions: batch_size x ntokens x 2 (y and x position of each token)
output:
* tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim)
"""
assert tokens.size(3) % 2 == 0, "number of dimensions should be a multiple of two"
D = tokens.size(3) // 2
assert positions.ndim == 3 and positions.shape[-1] == 2 # Batch, Seq, 2
cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype)
# split features into two along the feature dimension, and apply rope1d on each half
y, x = tokens.chunk(2, dim=-1)
y = self.apply_rope1d(y, positions[:, :, 0], cos, sin)
x = self.apply_rope1d(x, positions[:, :, 1], cos, sin)
tokens = torch.cat((y, x), dim=-1)
return tokens
|