File size: 8,003 Bytes
a220803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Sample new images from a pre-trained SiT.
"""
import os
import sys

from opensora.dataset import ae_denorm
from opensora.models.ae import ae_channel_config, getae, ae_stride_config
from opensora.models.diffusion import Diffusion_models
from opensora.models.diffusion.transport import create_transport, Sampler
from opensora.utils.utils import find_model

import torch
import argparse

from einops import rearrange
import imageio

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True



def main(mode, args):
    # Setup PyTorch:
    # torch.manual_seed(args.seed)
    torch.set_grad_enabled(False)
    device = "cuda" if torch.cuda.is_available() else "cpu"

    using_cfg = args.cfg_scale > 1.0
    
    # Load model:
    latent_size = args.image_size // ae_stride_config[args.ae][1]
    args.latent_size = latent_size
    model = Diffusion_models[args.model](
        input_size=latent_size,
        num_classes=args.num_classes,
        in_channels=ae_channel_config[args.ae],
        extras=args.extras
    ).to(device)

    if args.use_compile:
        model = torch.compile(model)

    # a pre-trained model or load a custom Latte checkpoint from train.py:
    ckpt_path = args.ckpt
    state_dict = find_model(ckpt_path)
    model.load_state_dict(state_dict)

    model.eval()  # important!
    transport = create_transport(
        args.path_type,
        args.prediction,
        args.loss_weight,
        args.train_eps,
        args.sample_eps
    )
    sampler = Sampler(transport)
    if mode == "ODE":
        if args.likelihood:
            assert args.cfg_scale == 1, "Likelihood is incompatible with guidance"
            sample_fn = sampler.sample_ode_likelihood(
                sampling_method=args.sampling_method,
                num_steps=args.num_sampling_steps,
                atol=args.atol,
                rtol=args.rtol,
            )
        else:
            sample_fn = sampler.sample_ode(
                sampling_method=args.sampling_method,
                num_steps=args.num_sampling_steps,
                atol=args.atol,
                rtol=args.rtol,
                reverse=args.reverse
            )      
    elif mode == "SDE":
        sample_fn = sampler.sample_sde(
            sampling_method=args.sampling_method,
            diffusion_form=args.diffusion_form,
            diffusion_norm=args.diffusion_norm,
            last_step=args.last_step,
            last_step_size=args.last_step_size,
            num_steps=args.num_sampling_steps,
        )

    ae = getae(args).to(device)

    if args.use_fp16:
        print('WARNING: using half percision for inferencing!')
        ae.to(dtype=torch.float16)
        model.to(dtype=torch.float16)

    # Labels to condition the model with (feel free to change):
    
    # Create sampling noise:
    if args.use_fp16:
        z = torch.randn(1, args.num_frames // ae_stride_config[args.ae][0], model.in_channels, latent_size, latent_size, dtype=torch.float16, device=device) # b c f h w
    else:
        z = torch.randn(1, args.num_frames // ae_stride_config[args.ae][0], model.in_channels, latent_size, latent_size, device=device)

    # Setup classifier-free guidance:
    if using_cfg:
        z = torch.cat([z, z], 0)
        y = torch.randint(0, args.num_classes, (1,), device=device)
        y_null = torch.tensor([args.num_classes] * 1, device=device)
        y = torch.cat([y, y_null], dim=0)
        model_kwargs = dict(y=y, cfg_scale=args.cfg_scale, use_fp16=args.use_fp16)
        forward_fn = model.forward_with_cfg
    else:
        forward_fn = model.forward
        model_kwargs = dict(y=None, use_fp16=args.use_fp16) 
    
    # Sample images:
    samples = sample_fn(z, forward_fn, **model_kwargs)[-1]
    
    if args.use_fp16:
        samples = samples.to(dtype=torch.float16)
    samples = ae.decode(samples)

    # Save and display images:
    if not os.path.exists(args.save_video_path):
        os.makedirs(args.save_video_path)


    video_ = (ae_denorm[args.ae](samples[0]) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1).contiguous()
    video_save_path = os.path.join(args.save_video_path, 'sample' + '.mp4')
    print(video_save_path)
    imageio.mimwrite(video_save_path, video_, fps=args.fps, quality=9)
    print('save path {}'.format(args.save_video_path))


def none_or_str(value):
    if value == 'None':
        return None
    return value

def parse_transport_args(parser):
    group = parser.add_argument_group("Transport arguments")
    group.add_argument("--path-type", type=str, default="Linear", choices=["Linear", "GVP", "VP"])
    group.add_argument("--prediction", type=str, default="velocity", choices=["velocity", "score", "noise"])
    group.add_argument("--loss-weight", type=none_or_str, default=None, choices=[None, "velocity", "likelihood"])
    group.add_argument("--sample-eps", type=float)
    group.add_argument("--train-eps", type=float)

def parse_ode_args(parser):
    group = parser.add_argument_group("ODE arguments")
    group.add_argument("--sampling-method", type=str, default="dopri5", help="blackbox ODE solver methods; for full list check https://github.com/rtqichen/torchdiffeq")
    group.add_argument("--atol", type=float, default=1e-6, help="Absolute tolerance")
    group.add_argument("--rtol", type=float, default=1e-3, help="Relative tolerance")
    group.add_argument("--reverse", action="store_true")
    group.add_argument("--likelihood", action="store_true")

def parse_sde_args(parser):
    group = parser.add_argument_group("SDE arguments")
    group.add_argument("--sampling-method", type=str, default="Euler", choices=["Euler", "Heun"])
    group.add_argument("--diffusion-form", type=str, default="sigma", \
                        choices=["constant", "SBDM", "sigma", "linear", "decreasing", "increasing-decreasing"],\
                        help="form of diffusion coefficient in the SDE")
    group.add_argument("--diffusion-norm", type=float, default=1.0)
    group.add_argument("--last-step", type=none_or_str, default="Mean", choices=[None, "Mean", "Tweedie", "Euler"],\
                        help="form of last step taken in the SDE")
    group.add_argument("--last-step-size", type=float, default=0.04, \
                        help="size of the last step taken")

if __name__ == "__main__":
    if len(sys.argv) < 2:
        print("Usage: program.py <mode> [options]")
        sys.exit(1)
    
    mode = sys.argv[1]

    assert mode[:2] != "--", "Usage: program.py <mode> [options]"
    assert mode in ["ODE", "SDE"], "Invalid mode. Please choose 'ODE' or 'SDE'"

    parser = argparse.ArgumentParser()
    parser.add_argument("--ckpt", type=str, default="")
    parser.add_argument("--model", type=str, default='Latte-XL/122')
    parser.add_argument("--ae", type=str, default='stabilityai/sd-vae-ft-mse')
    parser.add_argument("--save-video-path", type=str, default="./sample_videos/")
    parser.add_argument("--fps", type=int, default=10)
    parser.add_argument("--num-classes", type=int, default=101)
    parser.add_argument("--num-frames", type=int, default=16)
    parser.add_argument("--image-size", type=int, default=256, choices=[256, 512])
    parser.add_argument("--extras", type=int, default=1)
    parser.add_argument("--num-sampling-steps", type=int, default=250)
    parser.add_argument("--cfg-scale", type=float, default=1.0)
    parser.add_argument("--use-fp16", action="store_true")
    parser.add_argument("--use-compile", action="store_true")
    parser.add_argument("--sample-method", type=str, default='ddpm')

    parse_transport_args(parser)
    if mode == "ODE":
        parse_ode_args(parser)
        # Further processing for ODE
    elif mode == "SDE":
        parse_sde_args(parser)
        # Further processing for SDE
    
    args = parser.parse_known_args()[0]
    main(mode, args)