Spaces:
Runtime error
Runtime error
from torchvision.transforms import Compose | |
from transformers import AutoTokenizer | |
from .feature_datasets import T2V_Feature_dataset, T2V_T5_Feature_dataset | |
from torchvision import transforms | |
from torchvision.transforms import Lambda | |
from .landscope import Landscope | |
from .t2v_datasets import T2V_dataset | |
from .transform import ToTensorVideo, TemporalRandomCrop, RandomHorizontalFlipVideo, CenterCropResizeVideo | |
from .ucf101 import UCF101 | |
from .sky_datasets import Sky | |
ae_norm = { | |
'CausalVAEModel_4x8x8': Lambda(lambda x: 2. * x - 1.), | |
'CausalVQVAEModel_4x4x4': Lambda(lambda x: x - 0.5), | |
'CausalVQVAEModel_4x8x8': Lambda(lambda x: x - 0.5), | |
'VQVAEModel_4x4x4': Lambda(lambda x: x - 0.5), | |
'VQVAEModel_4x8x8': Lambda(lambda x: x - 0.5), | |
"bair_stride4x2x2": Lambda(lambda x: x - 0.5), | |
"ucf101_stride4x4x4": Lambda(lambda x: x - 0.5), | |
"kinetics_stride4x4x4": Lambda(lambda x: x - 0.5), | |
"kinetics_stride2x4x4": Lambda(lambda x: x - 0.5), | |
'stabilityai/sd-vae-ft-mse': transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
'stabilityai/sd-vae-ft-ema': transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
'vqgan_imagenet_f16_1024': Lambda(lambda x: 2. * x - 1.), | |
'vqgan_imagenet_f16_16384': Lambda(lambda x: 2. * x - 1.), | |
'vqgan_gumbel_f8': Lambda(lambda x: 2. * x - 1.), | |
} | |
ae_denorm = { | |
'CausalVAEModel_4x8x8': lambda x: (x + 1.) / 2., | |
'CausalVQVAEModel_4x4x4': lambda x: x + 0.5, | |
'CausalVQVAEModel_4x8x8': lambda x: x + 0.5, | |
'VQVAEModel_4x4x4': lambda x: x + 0.5, | |
'VQVAEModel_4x8x8': lambda x: x + 0.5, | |
"bair_stride4x2x2": lambda x: x + 0.5, | |
"ucf101_stride4x4x4": lambda x: x + 0.5, | |
"kinetics_stride4x4x4": lambda x: x + 0.5, | |
"kinetics_stride2x4x4": lambda x: x + 0.5, | |
'stabilityai/sd-vae-ft-mse': lambda x: 0.5 * x + 0.5, | |
'stabilityai/sd-vae-ft-ema': lambda x: 0.5 * x + 0.5, | |
'vqgan_imagenet_f16_1024': lambda x: (x + 1.) / 2., | |
'vqgan_imagenet_f16_16384': lambda x: (x + 1.) / 2., | |
'vqgan_gumbel_f8': lambda x: (x + 1.) / 2., | |
} | |
def getdataset(args): | |
temporal_sample = TemporalRandomCrop(args.num_frames * args.sample_rate) # 16 x | |
norm_fun = ae_norm[args.ae] | |
if args.dataset == 'ucf101': | |
transform = Compose( | |
[ | |
ToTensorVideo(), # TCHW | |
CenterCropResizeVideo(size=args.max_image_size), | |
RandomHorizontalFlipVideo(p=0.5), | |
norm_fun, | |
] | |
) | |
return UCF101(args, transform=transform, temporal_sample=temporal_sample) | |
if args.dataset == 'landscope': | |
transform = Compose( | |
[ | |
ToTensorVideo(), # TCHW | |
CenterCropResizeVideo(size=args.max_image_size), | |
RandomHorizontalFlipVideo(p=0.5), | |
norm_fun, | |
] | |
) | |
return Landscope(args, transform=transform, temporal_sample=temporal_sample) | |
elif args.dataset == 'sky': | |
transform = transforms.Compose([ | |
ToTensorVideo(), | |
CenterCropResizeVideo(args.max_image_size), | |
RandomHorizontalFlipVideo(p=0.5), | |
norm_fun | |
]) | |
return Sky(args, transform=transform, temporal_sample=temporal_sample) | |
elif args.dataset == 't2v': | |
transform = transforms.Compose([ | |
ToTensorVideo(), | |
CenterCropResizeVideo(args.max_image_size), | |
RandomHorizontalFlipVideo(p=0.5), | |
norm_fun | |
]) | |
tokenizer = AutoTokenizer.from_pretrained(args.text_encoder_name, cache_dir='./cache_dir') | |
return T2V_dataset(args, transform=transform, temporal_sample=temporal_sample, tokenizer=tokenizer) | |
elif args.dataset == 't2v_feature': | |
return T2V_Feature_dataset(args, temporal_sample) | |
elif args.dataset == 't2v_t5_feature': | |
transform = transforms.Compose([ | |
ToTensorVideo(), | |
CenterCropResizeVideo(args.max_image_size), | |
RandomHorizontalFlipVideo(p=0.5), | |
norm_fun | |
]) | |
return T2V_T5_Feature_dataset(args, transform, temporal_sample) | |
else: | |
raise NotImplementedError(args.dataset) | |