Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from .lpips import LPIPS | |
from einops import rearrange | |
from .discriminator import NLayerDiscriminator, weights_init, NLayerDiscriminator3D | |
def hinge_d_loss(logits_real, logits_fake): | |
loss_real = torch.mean(F.relu(1.0 - logits_real)) | |
loss_fake = torch.mean(F.relu(1.0 + logits_fake)) | |
d_loss = 0.5 * (loss_real + loss_fake) | |
return d_loss | |
def vanilla_d_loss(logits_real, logits_fake): | |
d_loss = 0.5 * ( | |
torch.mean(torch.nn.functional.softplus(-logits_real)) | |
+ torch.mean(torch.nn.functional.softplus(logits_fake)) | |
) | |
return d_loss | |
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights): | |
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0] | |
loss_real = torch.mean(F.relu(1.0 - logits_real), dim=[1, 2, 3]) | |
loss_fake = torch.mean(F.relu(1.0 + logits_fake), dim=[1, 2, 3]) | |
loss_real = (weights * loss_real).sum() / weights.sum() | |
loss_fake = (weights * loss_fake).sum() / weights.sum() | |
d_loss = 0.5 * (loss_real + loss_fake) | |
return d_loss | |
def adopt_weight(weight, global_step, threshold=0, value=0.0): | |
if global_step < threshold: | |
weight = value | |
return weight | |
def measure_perplexity(predicted_indices, n_embed): | |
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py | |
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally | |
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed) | |
avg_probs = encodings.mean(0) | |
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() | |
cluster_use = torch.sum(avg_probs > 0) | |
return perplexity, cluster_use | |
def l1(x, y): | |
return torch.abs(x - y) | |
def l2(x, y): | |
return torch.pow((x - y), 2) | |
class LPIPSWithDiscriminator(nn.Module): | |
def __init__( | |
self, | |
disc_start, | |
logvar_init=0.0, | |
kl_weight=1.0, | |
pixelloss_weight=1.0, | |
perceptual_weight=1.0, | |
# --- Discriminator Loss --- | |
disc_num_layers=3, | |
disc_in_channels=3, | |
disc_factor=1.0, | |
disc_weight=1.0, | |
use_actnorm=False, | |
disc_conditional=False, | |
disc_loss="hinge", | |
): | |
super().__init__() | |
assert disc_loss in ["hinge", "vanilla"] | |
self.kl_weight = kl_weight | |
self.pixel_weight = pixelloss_weight | |
self.perceptual_loss = LPIPS().eval() | |
self.perceptual_weight = perceptual_weight | |
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) | |
self.discriminator = NLayerDiscriminator( | |
input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm | |
).apply(weights_init) | |
self.discriminator_iter_start = disc_start | |
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss | |
self.disc_factor = disc_factor | |
self.discriminator_weight = disc_weight | |
self.disc_conditional = disc_conditional | |
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): | |
if last_layer is not None: | |
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
else: | |
nll_grads = torch.autograd.grad( | |
nll_loss, self.last_layer[0], retain_graph=True | |
)[0] | |
g_grads = torch.autograd.grad( | |
g_loss, self.last_layer[0], retain_graph=True | |
)[0] | |
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() | |
d_weight = d_weight * self.discriminator_weight | |
return d_weight | |
def forward( | |
self, | |
inputs, | |
reconstructions, | |
posteriors, | |
optimizer_idx, | |
global_step, | |
split="train", | |
weights=None, | |
last_layer=None, | |
cond=None, | |
): | |
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() | |
reconstructions = rearrange( | |
reconstructions, "b c t h w -> (b t) c h w" | |
).contiguous() | |
rec_loss = torch.abs(inputs - reconstructions) | |
if self.perceptual_weight > 0: | |
p_loss = self.perceptual_loss(inputs, reconstructions) | |
rec_loss = rec_loss + self.perceptual_weight * p_loss | |
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar | |
weighted_nll_loss = nll_loss | |
if weights is not None: | |
weighted_nll_loss = weights * nll_loss | |
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] | |
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] | |
kl_loss = posteriors.kl() | |
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
# GAN Part | |
if optimizer_idx == 0: | |
# generator update | |
if cond is None: | |
assert not self.disc_conditional | |
logits_fake = self.discriminator(reconstructions.contiguous()) | |
else: | |
assert self.disc_conditional | |
logits_fake = self.discriminator( | |
torch.cat((reconstructions.contiguous(), cond), dim=1) | |
) | |
g_loss = -torch.mean(logits_fake) | |
if self.disc_factor > 0.0: | |
try: | |
d_weight = self.calculate_adaptive_weight( | |
nll_loss, g_loss, last_layer=last_layer | |
) | |
except RuntimeError: | |
assert not self.training | |
d_weight = torch.tensor(0.0) | |
else: | |
d_weight = torch.tensor(0.0) | |
disc_factor = adopt_weight( | |
self.disc_factor, global_step, threshold=self.discriminator_iter_start | |
) | |
loss = ( | |
weighted_nll_loss | |
+ self.kl_weight * kl_loss | |
+ d_weight * disc_factor * g_loss | |
) | |
log = { | |
"{}/total_loss".format(split): loss.clone().detach().mean(), | |
"{}/logvar".format(split): self.logvar.detach(), | |
"{}/kl_loss".format(split): kl_loss.detach().mean(), | |
"{}/nll_loss".format(split): nll_loss.detach().mean(), | |
"{}/rec_loss".format(split): rec_loss.detach().mean(), | |
"{}/d_weight".format(split): d_weight.detach(), | |
"{}/disc_factor".format(split): torch.tensor(disc_factor), | |
"{}/g_loss".format(split): g_loss.detach().mean(), | |
} | |
return loss, log | |
if optimizer_idx == 1: | |
if cond is None: | |
logits_real = self.discriminator(inputs.contiguous().detach()) | |
logits_fake = self.discriminator(reconstructions.contiguous().detach()) | |
else: | |
logits_real = self.discriminator( | |
torch.cat((inputs.contiguous().detach(), cond), dim=1) | |
) | |
logits_fake = self.discriminator( | |
torch.cat((reconstructions.contiguous().detach(), cond), dim=1) | |
) | |
disc_factor = adopt_weight( | |
self.disc_factor, global_step, threshold=self.discriminator_iter_start | |
) | |
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) | |
log = { | |
"{}/disc_loss".format(split): d_loss.clone().detach().mean(), | |
"{}/logits_real".format(split): logits_real.detach().mean(), | |
"{}/logits_fake".format(split): logits_fake.detach().mean(), | |
} | |
return d_loss, log | |
class LPIPSWithDiscriminator3D(nn.Module): | |
def __init__( | |
self, | |
disc_start, | |
logvar_init=0.0, | |
kl_weight=1.0, | |
pixelloss_weight=1.0, | |
perceptual_weight=1.0, | |
# --- Discriminator Loss --- | |
disc_num_layers=3, | |
disc_in_channels=3, | |
disc_factor=1.0, | |
disc_weight=1.0, | |
use_actnorm=False, | |
disc_conditional=False, | |
disc_loss="hinge", | |
): | |
super().__init__() | |
assert disc_loss in ["hinge", "vanilla"] | |
self.kl_weight = kl_weight | |
self.pixel_weight = pixelloss_weight | |
self.perceptual_loss = LPIPS().eval() | |
self.perceptual_weight = perceptual_weight | |
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) | |
self.discriminator = NLayerDiscriminator3D( | |
input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm | |
).apply(weights_init) | |
self.discriminator_iter_start = disc_start | |
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss | |
self.disc_factor = disc_factor | |
self.discriminator_weight = disc_weight | |
self.disc_conditional = disc_conditional | |
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): | |
if last_layer is not None: | |
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
else: | |
nll_grads = torch.autograd.grad( | |
nll_loss, self.last_layer[0], retain_graph=True | |
)[0] | |
g_grads = torch.autograd.grad( | |
g_loss, self.last_layer[0], retain_graph=True | |
)[0] | |
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() | |
d_weight = d_weight * self.discriminator_weight | |
return d_weight | |
def forward( | |
self, | |
inputs, | |
reconstructions, | |
posteriors, | |
optimizer_idx, | |
global_step, | |
split="train", | |
weights=None, | |
last_layer=None, | |
cond=None, | |
): | |
t = inputs.shape[2] | |
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() | |
reconstructions = rearrange( | |
reconstructions, "b c t h w -> (b t) c h w" | |
).contiguous() | |
rec_loss = torch.abs(inputs - reconstructions) | |
if self.perceptual_weight > 0: | |
p_loss = self.perceptual_loss(inputs, reconstructions) | |
rec_loss = rec_loss + self.perceptual_weight * p_loss | |
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar | |
weighted_nll_loss = nll_loss | |
if weights is not None: | |
weighted_nll_loss = weights * nll_loss | |
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] | |
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] | |
kl_loss = posteriors.kl() | |
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
inputs = rearrange(inputs, "(b t) c h w -> b c t h w", t=t).contiguous() | |
reconstructions = rearrange( | |
reconstructions, "(b t) c h w -> b c t h w", t=t | |
).contiguous() | |
# GAN Part | |
if optimizer_idx == 0: | |
# generator update | |
if cond is None: | |
assert not self.disc_conditional | |
logits_fake = self.discriminator(reconstructions) | |
else: | |
assert self.disc_conditional | |
logits_fake = self.discriminator( | |
torch.cat((reconstructions, cond), dim=1) | |
) | |
g_loss = -torch.mean(logits_fake) | |
if self.disc_factor > 0.0: | |
try: | |
d_weight = self.calculate_adaptive_weight( | |
nll_loss, g_loss, last_layer=last_layer | |
) | |
except RuntimeError as e: | |
assert not self.training, print(e) | |
d_weight = torch.tensor(0.0) | |
else: | |
d_weight = torch.tensor(0.0) | |
disc_factor = adopt_weight( | |
self.disc_factor, global_step, threshold=self.discriminator_iter_start | |
) | |
loss = ( | |
weighted_nll_loss | |
+ self.kl_weight * kl_loss | |
+ d_weight * disc_factor * g_loss | |
) | |
log = { | |
"{}/total_loss".format(split): loss.clone().detach().mean(), | |
"{}/logvar".format(split): self.logvar.detach(), | |
"{}/kl_loss".format(split): kl_loss.detach().mean(), | |
"{}/nll_loss".format(split): nll_loss.detach().mean(), | |
"{}/rec_loss".format(split): rec_loss.detach().mean(), | |
"{}/d_weight".format(split): d_weight.detach(), | |
"{}/disc_factor".format(split): torch.tensor(disc_factor), | |
"{}/g_loss".format(split): g_loss.detach().mean(), | |
} | |
return loss, log | |
if optimizer_idx == 1: | |
if cond is None: | |
logits_real = self.discriminator(inputs.contiguous().detach()) | |
logits_fake = self.discriminator(reconstructions.contiguous().detach()) | |
else: | |
logits_real = self.discriminator( | |
torch.cat((inputs.contiguous().detach(), cond), dim=1) | |
) | |
logits_fake = self.discriminator( | |
torch.cat((reconstructions.contiguous().detach(), cond), dim=1) | |
) | |
disc_factor = adopt_weight( | |
self.disc_factor, global_step, threshold=self.discriminator_iter_start | |
) | |
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) | |
log = { | |
"{}/disc_loss".format(split): d_loss.clone().detach().mean(), | |
"{}/logits_real".format(split): logits_real.detach().mean(), | |
"{}/logits_fake".format(split): logits_fake.detach().mean(), | |
} | |
return d_loss, log | |
class SimpleLPIPS(nn.Module): | |
def __init__( | |
self, | |
logvar_init=0.0, | |
kl_weight=1.0, | |
pixelloss_weight=1.0, | |
perceptual_weight=1.0, | |
disc_loss="hinge", | |
): | |
super().__init__() | |
assert disc_loss in ["hinge", "vanilla"] | |
self.kl_weight = kl_weight | |
self.pixel_weight = pixelloss_weight | |
self.perceptual_loss = LPIPS().eval() | |
self.perceptual_weight = perceptual_weight | |
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) | |
def forward( | |
self, | |
inputs, | |
reconstructions, | |
posteriors, | |
split="train", | |
weights=None, | |
): | |
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() | |
reconstructions = rearrange( | |
reconstructions, "b c t h w -> (b t) c h w" | |
).contiguous() | |
rec_loss = torch.abs(inputs - reconstructions) | |
if self.perceptual_weight > 0: | |
p_loss = self.perceptual_loss(inputs, reconstructions) | |
rec_loss = rec_loss + self.perceptual_weight * p_loss | |
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar | |
weighted_nll_loss = nll_loss | |
if weights is not None: | |
weighted_nll_loss = weights * nll_loss | |
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] | |
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] | |
kl_loss = posteriors.kl() | |
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
loss = weighted_nll_loss + self.kl_weight * kl_loss | |
log = { | |
"{}/total_loss".format(split): loss.clone().detach().mean(), | |
"{}/logvar".format(split): self.logvar.detach(), | |
"{}/kl_loss".format(split): kl_loss.detach().mean(), | |
"{}/nll_loss".format(split): nll_loss.detach().mean(), | |
"{}/rec_loss".format(split): rec_loss.detach().mean(), | |
} | |
if self.perceptual_weight > 0: | |
log.update({"{}/p_loss".format(split): p_loss.detach().mean()}) | |
return loss, log | |