Spaces:
Runtime error
Runtime error
from ..modeling_videobase import VideoBaseAE | |
import torch | |
from torch import nn, Tensor | |
import numpy as np | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
import math | |
import os | |
import json | |
from typing import Tuple, Dict, Union | |
from .configuration_vqvae import VQVAEConfiguration | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
def view_range(x, i, j, shape): | |
shape = tuple(shape) | |
n_dims = len(x.shape) | |
if i < 0: | |
i = n_dims + i | |
if j is None: | |
j = n_dims | |
elif j < 0: | |
j = n_dims + j | |
assert 0 <= i < j <= n_dims | |
x_shape = x.shape | |
target_shape = x_shape[:i] + shape + x_shape[j:] | |
return x.view(target_shape) | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True): | |
n_dims = len(x.shape) | |
if src_dim < 0: | |
src_dim = n_dims + src_dim | |
if dest_dim < 0: | |
dest_dim = n_dims + dest_dim | |
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims | |
dims = list(range(n_dims)) | |
del dims[src_dim] | |
permutation = [] | |
ctr = 0 | |
for i in range(n_dims): | |
if i == dest_dim: | |
permutation.append(src_dim) | |
else: | |
permutation.append(dims[ctr]) | |
ctr += 1 | |
x = x.permute(permutation) | |
if make_contiguous: | |
x = x.contiguous() | |
return x | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0.0, training=True): | |
# Performs scaled dot-product attention over the second to last dimension dn | |
# (b, n_head, d1, ..., dn, d) | |
attn = torch.matmul(q, k.transpose(-1, -2)) | |
attn = attn / np.sqrt(q.shape[-1]) | |
if mask is not None: | |
attn = attn.masked_fill(mask == 0, float("-inf")) | |
attn_float = F.softmax(attn, dim=-1) | |
attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d | |
attn = F.dropout(attn, p=attn_dropout, training=training) | |
a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d | |
return a | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class AxialBlock(nn.Module): | |
def __init__(self, n_hiddens, n_head): | |
super().__init__() | |
kwargs = dict( | |
shape=(0,) * 3, | |
dim_q=n_hiddens, | |
dim_kv=n_hiddens, | |
n_head=n_head, | |
n_layer=1, | |
causal=False, | |
attn_type="axial", | |
) | |
self.attn_w = MultiHeadAttention(attn_kwargs=dict(axial_dim=-2), **kwargs) | |
self.attn_h = MultiHeadAttention(attn_kwargs=dict(axial_dim=-3), **kwargs) | |
self.attn_t = MultiHeadAttention(attn_kwargs=dict(axial_dim=-4), **kwargs) | |
def forward(self, x): | |
x = shift_dim(x, 1, -1) | |
x = self.attn_w(x, x, x) + self.attn_h(x, x, x) + self.attn_t(x, x, x) | |
x = shift_dim(x, -1, 1) | |
return x | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class AttentionResidualBlock(nn.Module): | |
def __init__(self, n_hiddens): | |
super().__init__() | |
self.block = nn.Sequential( | |
nn.BatchNorm3d(n_hiddens), | |
nn.ReLU(), | |
SamePadConv3d(n_hiddens, n_hiddens // 2, 3, bias=False), | |
nn.BatchNorm3d(n_hiddens // 2), | |
nn.ReLU(), | |
SamePadConv3d(n_hiddens // 2, n_hiddens, 1, bias=False), | |
nn.BatchNorm3d(n_hiddens), | |
nn.ReLU(), | |
AxialBlock(n_hiddens, 2), | |
) | |
def forward(self, x): | |
return x + self.block(x) | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class Codebook(nn.Module): | |
def __init__(self, n_codes, embedding_dim): | |
super().__init__() | |
self.register_buffer("embeddings", torch.randn(n_codes, embedding_dim)) | |
self.register_buffer("N", torch.zeros(n_codes)) | |
self.register_buffer("z_avg", self.embeddings.data.clone()) | |
self.n_codes = n_codes | |
self.embedding_dim = embedding_dim | |
self._need_init = True | |
def _tile(self, x): | |
d, ew = x.shape | |
if d < self.n_codes: | |
n_repeats = (self.n_codes + d - 1) // d | |
std = 0.01 / np.sqrt(ew) | |
x = x.repeat(n_repeats, 1) | |
x = x + torch.randn_like(x) * std | |
return x | |
def _init_embeddings(self, z): | |
# z: [b, c, t, h, w] | |
self._need_init = False | |
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) | |
y = self._tile(flat_inputs) | |
d = y.shape[0] | |
_k_rand = y[torch.randperm(y.shape[0])][: self.n_codes] | |
if dist.is_initialized(): | |
dist.broadcast(_k_rand, 0) | |
self.embeddings.data.copy_(_k_rand) | |
self.z_avg.data.copy_(_k_rand) | |
self.N.data.copy_(torch.ones(self.n_codes)) | |
def forward(self, z): | |
# z: [b, c, t, h, w] | |
if self._need_init and self.training: | |
self._init_embeddings(z) | |
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) | |
distances = ( | |
(flat_inputs**2).sum(dim=1, keepdim=True) | |
- 2 * flat_inputs @ self.embeddings.t() | |
+ (self.embeddings.t() ** 2).sum(dim=0, keepdim=True) | |
) | |
encoding_indices = torch.argmin(distances, dim=1) | |
encode_onehot = F.one_hot(encoding_indices, self.n_codes).type_as(flat_inputs) | |
encoding_indices = encoding_indices.view(z.shape[0], *z.shape[2:]) | |
embeddings = F.embedding(encoding_indices, self.embeddings) | |
embeddings = shift_dim(embeddings, -1, 1) | |
commitment_loss = 0.25 * F.mse_loss(z, embeddings.detach()) | |
# EMA codebook update | |
if self.training: | |
n_total = encode_onehot.sum(dim=0) | |
encode_sum = flat_inputs.t() @ encode_onehot | |
if dist.is_initialized(): | |
dist.all_reduce(n_total) | |
dist.all_reduce(encode_sum) | |
self.N.data.mul_(0.99).add_(n_total, alpha=0.01) | |
self.z_avg.data.mul_(0.99).add_(encode_sum.t(), alpha=0.01) | |
n = self.N.sum() | |
weights = (self.N + 1e-7) / (n + self.n_codes * 1e-7) * n | |
encode_normalized = self.z_avg / weights.unsqueeze(1) | |
self.embeddings.data.copy_(encode_normalized) | |
y = self._tile(flat_inputs) | |
_k_rand = y[torch.randperm(y.shape[0])][: self.n_codes] | |
if dist.is_initialized(): | |
dist.broadcast(_k_rand, 0) | |
usage = (self.N.view(self.n_codes, 1) >= 1).float() | |
self.embeddings.data.mul_(usage).add_(_k_rand * (1 - usage)) | |
embeddings_st = (embeddings - z).detach() + z | |
avg_probs = torch.mean(encode_onehot, dim=0) | |
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) | |
return dict( | |
embeddings=embeddings_st, | |
encodings=encoding_indices, | |
commitment_loss=commitment_loss, | |
perplexity=perplexity, | |
) | |
def dictionary_lookup(self, encodings): | |
embeddings = F.embedding(encodings, self.embeddings) | |
return embeddings | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class Encoder(nn.Module): | |
def __init__(self, n_hiddens, n_res_layers, downsample): | |
super().__init__() | |
n_times_downsample = np.array([int(math.log2(d)) for d in downsample]) | |
self.convs = nn.ModuleList() | |
max_ds = n_times_downsample.max() | |
for i in range(max_ds): | |
in_channels = 3 if i == 0 else n_hiddens | |
stride = tuple([2 if d > 0 else 1 for d in n_times_downsample]) | |
conv = SamePadConv3d(in_channels, n_hiddens, 4, stride=stride) | |
self.convs.append(conv) | |
n_times_downsample -= 1 | |
self.conv_last = SamePadConv3d(in_channels, n_hiddens, kernel_size=3) | |
self.res_stack = nn.Sequential( | |
*[AttentionResidualBlock(n_hiddens) for _ in range(n_res_layers)], | |
nn.BatchNorm3d(n_hiddens), | |
nn.ReLU(), | |
) | |
def forward(self, x): | |
h = x | |
for conv in self.convs: | |
h = F.relu(conv(h)) | |
h = self.conv_last(h) | |
h = self.res_stack(h) | |
return h | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class MultiHeadAttention(nn.Module): | |
def __init__( | |
self, shape, dim_q, dim_kv, n_head, n_layer, causal, attn_type, attn_kwargs | |
): | |
super().__init__() | |
self.causal = causal | |
self.shape = shape | |
self.d_k = dim_q // n_head | |
self.d_v = dim_kv // n_head | |
self.n_head = n_head | |
self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q | |
self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q)) | |
self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k | |
self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) | |
self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v | |
self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) | |
self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c | |
self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer)) | |
if attn_type == "full": | |
self.attn = FullAttention(shape, causal, **attn_kwargs) | |
elif attn_type == "axial": | |
assert not causal, "causal axial attention is not supported" | |
self.attn = AxialAttention(len(shape), **attn_kwargs) | |
elif attn_type == "sparse": | |
self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs) | |
self.cache = None | |
def forward(self, q, k, v, decode_step=None, decode_idx=None): | |
"""Compute multi-head attention | |
Args | |
q, k, v: a [b, d1, ..., dn, c] tensor or | |
a [b, 1, ..., 1, c] tensor if decode_step is not None | |
Returns | |
The output after performing attention | |
""" | |
# compute k, q, v | |
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head | |
q = view_range(self.w_qs(q), -1, None, (n_head, d_k)) | |
k = view_range(self.w_ks(k), -1, None, (n_head, d_k)) | |
v = view_range(self.w_vs(v), -1, None, (n_head, d_v)) | |
# b x n_head x seq_len x d | |
# (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d) | |
q = shift_dim(q, -2, 1) | |
k = shift_dim(k, -2, 1) | |
v = shift_dim(v, -2, 1) | |
# fast decoding | |
if decode_step is not None: | |
if decode_step == 0: | |
if self.causal: | |
k_shape = (q.shape[0], n_head, *self.shape, self.d_k) | |
v_shape = (q.shape[0], n_head, *self.shape, self.d_v) | |
self.cache = dict( | |
k=torch.zeros(k_shape, dtype=k.dtype, device=q.device), | |
v=torch.zeros(v_shape, dtype=v.dtype, device=q.device), | |
) | |
else: | |
# cache only once in the non-causal case | |
self.cache = dict(k=k.clone(), v=v.clone()) | |
if self.causal: | |
idx = ( | |
slice(None, None), | |
slice(None, None), | |
*[slice(i, i + 1) for i in decode_idx], | |
) | |
self.cache["k"][idx] = k | |
self.cache["v"][idx] = v | |
k, v = self.cache["k"], self.cache["v"] | |
a = self.attn(q, k, v, decode_step, decode_idx) | |
# (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d) | |
a = shift_dim(a, 1, -2).flatten(start_dim=-2) | |
a = self.fc(a) # (b x seq_len x embd_dim) | |
return a | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class Decoder(nn.Module): | |
def __init__(self, n_hiddens, n_res_layers, upsample): | |
super().__init__() | |
self.res_stack = nn.Sequential( | |
*[AttentionResidualBlock(n_hiddens) for _ in range(n_res_layers)], | |
nn.BatchNorm3d(n_hiddens), | |
nn.ReLU(), | |
) | |
n_times_upsample = np.array([int(math.log2(d)) for d in upsample]) | |
max_us = n_times_upsample.max() | |
self.convts = nn.ModuleList() | |
for i in range(max_us): | |
out_channels = 3 if i == max_us - 1 else n_hiddens | |
us = tuple([2 if d > 0 else 1 for d in n_times_upsample]) | |
convt = SamePadConvTranspose3d(n_hiddens, out_channels, 4, stride=us) | |
self.convts.append(convt) | |
n_times_upsample -= 1 | |
def forward(self, x): | |
h = self.res_stack(x) | |
for i, convt in enumerate(self.convts): | |
h = convt(h) | |
if i < len(self.convts) - 1: | |
h = F.relu(h) | |
return h | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class SamePadConv3d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): | |
super().__init__() | |
if isinstance(kernel_size, int): | |
kernel_size = (kernel_size,) * 3 | |
if isinstance(stride, int): | |
stride = (stride,) * 3 | |
# assumes that the input shape is divisible by stride | |
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)]) | |
pad_input = [] | |
for p in total_pad[::-1]: # reverse since F.pad starts from last dim | |
pad_input.append((p // 2 + p % 2, p // 2)) | |
pad_input = sum(pad_input, tuple()) | |
self.pad_input = pad_input | |
self.conv = nn.Conv3d( | |
in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias | |
) | |
def forward(self, x): | |
return self.conv(F.pad(x, self.pad_input)) | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class SamePadConvTranspose3d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): | |
super().__init__() | |
if isinstance(kernel_size, int): | |
kernel_size = (kernel_size,) * 3 | |
if isinstance(stride, int): | |
stride = (stride,) * 3 | |
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)]) | |
pad_input = [] | |
for p in total_pad[::-1]: # reverse since F.pad starts from last dim | |
pad_input.append((p // 2 + p % 2, p // 2)) | |
pad_input = sum(pad_input, tuple()) | |
self.pad_input = pad_input | |
self.convt = nn.ConvTranspose3d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
bias=bias, | |
padding=tuple([k - 1 for k in kernel_size]), | |
) | |
def forward(self, x): | |
return self.convt(F.pad(x, self.pad_input)) | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class FullAttention(nn.Module): | |
def __init__(self, shape, causal, attn_dropout): | |
super().__init__() | |
self.causal = causal | |
self.attn_dropout = attn_dropout | |
seq_len = np.prod(shape) | |
if self.causal: | |
self.register_buffer("mask", torch.tril(torch.ones(seq_len, seq_len))) | |
def forward(self, q, k, v, decode_step, decode_idx): | |
mask = self.mask if self.causal else None | |
if decode_step is not None and mask is not None: | |
mask = mask[[decode_step]] | |
old_shape = q.shape[2:-1] | |
q = q.flatten(start_dim=2, end_dim=-2) | |
k = k.flatten(start_dim=2, end_dim=-2) | |
v = v.flatten(start_dim=2, end_dim=-2) | |
out = scaled_dot_product_attention( | |
q, k, v, mask=mask, attn_dropout=self.attn_dropout, training=self.training | |
) | |
return view_range(out, 2, 3, old_shape) | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class AxialAttention(nn.Module): | |
def __init__(self, n_dim, axial_dim): | |
super().__init__() | |
if axial_dim < 0: | |
axial_dim = 2 + n_dim + 1 + axial_dim | |
else: | |
axial_dim += 2 # account for batch, head, dim | |
self.axial_dim = axial_dim | |
def forward(self, q, k, v, decode_step, decode_idx): | |
q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3) | |
k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3) | |
v = shift_dim(v, self.axial_dim, -2) | |
old_shape = list(v.shape) | |
v = v.flatten(end_dim=-3) | |
out = scaled_dot_product_attention(q, k, v, training=self.training) | |
out = out.view(*old_shape) | |
out = shift_dim(out, -2, self.axial_dim) | |
return out | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class StridedSparsityConfig(object): | |
""" | |
Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that | |
generalizes to arbitrary dimensions | |
""" | |
def __init__(self, shape, n_head, causal, block, num_local_blocks): | |
self.n_head = n_head | |
self.shape = shape | |
self.causal = causal | |
self.block = block | |
self.num_local_blocks = num_local_blocks | |
assert self.num_local_blocks >= 1, "Must have at least 1 local block" | |
assert self.seq_len % self.block == 0, "seq len must be divisible by block size" | |
self._block_shape = self._compute_block_shape() | |
self._block_shape_cum = self._block_shape_cum_sizes() | |
def seq_len(self): | |
return np.prod(self.shape) | |
def num_blocks(self): | |
return self.seq_len // self.block | |
def set_local_layout(self, layout): | |
num_blocks = self.num_blocks | |
for row in range(0, num_blocks): | |
end = min(row + self.num_local_blocks, num_blocks) | |
for col in range( | |
max(0, row - self.num_local_blocks), (row + 1 if self.causal else end) | |
): | |
layout[:, row, col] = 1 | |
return layout | |
def set_global_layout(self, layout): | |
num_blocks = self.num_blocks | |
n_dim = len(self._block_shape) | |
for row in range(num_blocks): | |
assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row | |
cur_idx = self._to_unflattened_idx(row) | |
# no strided attention over last dim | |
for d in range(n_dim - 1): | |
end = self._block_shape[d] | |
for i in range(0, (cur_idx[d] + 1 if self.causal else end)): | |
new_idx = list(cur_idx) | |
new_idx[d] = i | |
new_idx = tuple(new_idx) | |
col = self._to_flattened_idx(new_idx) | |
layout[:, row, col] = 1 | |
return layout | |
def make_layout(self): | |
layout = torch.zeros( | |
(self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64 | |
) | |
layout = self.set_local_layout(layout) | |
layout = self.set_global_layout(layout) | |
return layout | |
def make_sparse_attn_mask(self): | |
block_layout = self.make_layout() | |
assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks | |
num_dense_blocks = block_layout.sum().item() | |
attn_mask = torch.ones(num_dense_blocks, self.block, self.block) | |
counter = 0 | |
for h in range(self.n_head): | |
for i in range(self.num_blocks): | |
for j in range(self.num_blocks): | |
elem = block_layout[h, i, j].item() | |
if elem == 1: | |
assert i >= j | |
if i == j: # need to mask within block on diagonals | |
attn_mask[counter] = torch.tril(attn_mask[counter]) | |
counter += 1 | |
assert counter == num_dense_blocks | |
return attn_mask.unsqueeze(0) | |
def get_non_block_layout_row(self, block_layout, row): | |
block_row = row // self.block | |
block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks | |
block_row = block_row.repeat_interleave(self.block, dim=-1) | |
block_row[:, :, row + 1 :] = 0.0 | |
return block_row | |
############# Helper functions ########################## | |
def _compute_block_shape(self): | |
n_dim = len(self.shape) | |
cum_prod = 1 | |
for i in range(n_dim - 1, -1, -1): | |
cum_prod *= self.shape[i] | |
if cum_prod > self.block: | |
break | |
assert cum_prod % self.block == 0 | |
new_shape = (*self.shape[:i], cum_prod // self.block) | |
assert np.prod(new_shape) == np.prod(self.shape) // self.block | |
return new_shape | |
def _block_shape_cum_sizes(self): | |
bs = np.flip(np.array(self._block_shape)) | |
return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,) | |
def _to_flattened_idx(self, idx): | |
assert len(idx) == len( | |
self._block_shape | |
), f"{len(idx)} != {len(self._block_shape)}" | |
flat_idx = 0 | |
for i in range(len(self._block_shape)): | |
flat_idx += idx[i] * self._block_shape_cum[i] | |
return flat_idx | |
def _to_unflattened_idx(self, flat_idx): | |
assert flat_idx < np.prod(self._block_shape) | |
idx = [] | |
for i in range(len(self._block_shape)): | |
idx.append(flat_idx // self._block_shape_cum[i]) | |
flat_idx %= self._block_shape_cum[i] | |
return tuple(idx) | |
# Copied from https://github.com/wilson1yan/VideoGPT | |
class SparseAttention(nn.Module): | |
ops = dict() | |
attn_mask = dict() | |
block_layout = dict() | |
def __init__( | |
self, shape, n_head, causal, num_local_blocks=4, block=32, attn_dropout=0.0 | |
): # does not use attn_dropout | |
super().__init__() | |
self.causal = causal | |
self.shape = shape | |
self.sparsity_config = StridedSparsityConfig( | |
shape=shape, | |
n_head=n_head, | |
causal=causal, | |
block=block, | |
num_local_blocks=num_local_blocks, | |
) | |
if self.shape not in SparseAttention.block_layout: | |
SparseAttention.block_layout[self.shape] = ( | |
self.sparsity_config.make_layout() | |
) | |
if causal and self.shape not in SparseAttention.attn_mask: | |
SparseAttention.attn_mask[self.shape] = ( | |
self.sparsity_config.make_sparse_attn_mask() | |
) | |
def get_ops(self): | |
try: | |
from deepspeed.ops.sparse_attention import MatMul, Softmax | |
except: | |
raise Exception( | |
"Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`" | |
) | |
if self.shape not in SparseAttention.ops: | |
sparsity_layout = self.sparsity_config.make_layout() | |
sparse_dot_sdd_nt = MatMul( | |
sparsity_layout, | |
self.sparsity_config.block, | |
"sdd", | |
trans_a=False, | |
trans_b=True, | |
) | |
sparse_dot_dsd_nn = MatMul( | |
sparsity_layout, | |
self.sparsity_config.block, | |
"dsd", | |
trans_a=False, | |
trans_b=False, | |
) | |
sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block) | |
SparseAttention.ops[self.shape] = ( | |
sparse_dot_sdd_nt, | |
sparse_dot_dsd_nn, | |
sparse_softmax, | |
) | |
return SparseAttention.ops[self.shape] | |
def forward(self, q, k, v, decode_step, decode_idx): | |
if self.training and self.shape not in SparseAttention.ops: | |
self.get_ops() | |
SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[ | |
self.shape | |
].to(q) | |
if self.causal: | |
SparseAttention.attn_mask[self.shape] = ( | |
SparseAttention.attn_mask[self.shape].to(q).type_as(q) | |
) | |
attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None | |
old_shape = q.shape[2:-1] | |
q = q.flatten(start_dim=2, end_dim=-2) | |
k = k.flatten(start_dim=2, end_dim=-2) | |
v = v.flatten(start_dim=2, end_dim=-2) | |
if decode_step is not None: | |
mask = self.sparsity_config.get_non_block_layout_row( | |
SparseAttention.block_layout[self.shape], decode_step | |
) | |
out = scaled_dot_product_attention( | |
q, k, v, mask=mask, training=self.training | |
) | |
else: | |
if q.shape != k.shape or k.shape != v.shape: | |
raise Exception("SparseAttention only support self-attention") | |
sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops() | |
scaling = float(q.shape[-1]) ** -0.5 | |
attn_output_weights = sparse_dot_sdd_nt(q, k) | |
if attn_mask is not None: | |
attn_output_weights = attn_output_weights.masked_fill( | |
attn_mask == 0, float("-inf") | |
) | |
attn_output_weights = sparse_softmax(attn_output_weights, scale=scaling) | |
out = sparse_dot_dsd_nn(attn_output_weights, v) | |
return view_range(out, 2, 3, old_shape) | |
# Modified from https://github.com/wilson1yan/VideoGPT | |
class VQVAEModel(VideoBaseAE): | |
DOWNLOADED_VQVAE = { | |
"bair_stride4x2x2": "1iIAYJ2Qqrx5Q94s5eIXQYJgAydzvT_8L", | |
"ucf101_stride4x4x4": "1uuB_8WzHP_bbBmfuaIV7PK_Itl3DyHY5", | |
"kinetics_stride4x4x4": "1DOvOZnFAIQmux6hG7pN_HkyJZy3lXbCB", | |
"kinetics_stride2x4x4": "1jvtjjtrtE4cy6pl7DK_zWFEPY3RZt2pB", | |
} | |
def __init__(self, config: VQVAEConfiguration): | |
super().__init__() | |
self.config = config | |
self.embedding_dim = config.embedding_dim | |
self.n_codes = config.n_codes | |
self.encoder = Encoder(config.n_hiddens, config.n_res_layers, config.downsample) | |
self.decoder = Decoder(config.n_hiddens, config.n_res_layers, config.downsample) | |
self.pre_vq_conv = SamePadConv3d(config.n_hiddens, config.embedding_dim, 1) | |
self.post_vq_conv = SamePadConv3d(config.embedding_dim, config.n_hiddens, 1) | |
self.codebook = Codebook(config.n_codes, config.embedding_dim) | |
def forward(self, x): | |
z = self.pre_vq_conv(self.encoder(x)) | |
vq_output = self.codebook(z) | |
x_recon = self.decoder(self.post_vq_conv(vq_output["embeddings"])) | |
recon_loss = F.mse_loss(x_recon, x) / 0.06 | |
return recon_loss, x_recon, vq_output | |
def encode(self, x: Tensor, include_embeddings: bool = False) -> Union[Tuple[Tensor, Tensor], Tensor]: | |
h = self.pre_vq_conv(self.encoder(x)) | |
vq_output: Dict[str, Tensor] = self.codebook(h) | |
if include_embeddings: | |
return vq_output["encodings"], vq_output["embeddings"] | |
else: | |
return vq_output["encodings"] | |
def decode(self, encodings: Tensor) -> Tensor: | |
h = F.embedding(encodings, self.codebook.embeddings) | |
h = self.post_vq_conv(shift_dim(h, -1, 1)) | |
return self.decoder(h) | |
def load_from_checkpoint(cls, model_path): | |
if not os.path.isdir(model_path): | |
"""model downloaded from internet""" | |
model_cpkt = torch.load(model_path) | |
# Compatible with old videogpt model formats. | |
if "hyper_parameters" in model_cpkt: | |
hyper_parameters = vars(model_cpkt.get("hyper_parameters").get("args")) | |
state_dict = model_cpkt.get("state_dict") | |
model = cls(config=VQVAEConfiguration(**hyper_parameters)) | |
model.load_state_dict(state_dict) | |
return model | |
else: | |
raise RuntimeError("Model checkpoint has a wrong format.") | |
else: | |
with open(os.path.join(model_path, "config.json"), "r") as file: | |
config = json.load(file) | |
state_dict = torch.load(os.path.join(model_path, "pytorch_model.bin"), map_location="cpu") | |
model = cls(config=VQVAEConfiguration(**config)) | |
model.load_state_dict(state_dict) | |
return model | |
def download_and_load_model(cls, model_name, cache_dir=None): | |
from .....utils.downloader import gdown_download | |
path = gdown_download( | |
cls.DOWNLOADED_VQVAE[model_name], model_name, cache_dir=cache_dir | |
) | |
return cls.load_from_checkpoint(path) | |