Spaces:
Runtime error
Runtime error
import math | |
import os | |
import torch | |
import argparse | |
import torchvision | |
from diffusers.schedulers import (DDIMScheduler, DDPMScheduler, PNDMScheduler, | |
EulerDiscreteScheduler, DPMSolverMultistepScheduler, | |
HeunDiscreteScheduler, EulerAncestralDiscreteScheduler, | |
DEISMultistepScheduler, KDPM2AncestralDiscreteScheduler) | |
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler | |
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder | |
from omegaconf import OmegaConf | |
from torchvision.utils import save_image | |
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer | |
import os, sys | |
from opensora.models.ae import ae_stride_config, getae, getae_wrapper | |
from opensora.models.ae.videobase import CausalVQVAEModelWrapper, CausalVAEModelWrapper | |
from opensora.models.diffusion.latte.modeling_latte import LatteT2V | |
from opensora.models.text_encoder import get_text_enc | |
from opensora.utils.utils import save_video_grid | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
from pipeline_videogen import VideoGenPipeline | |
import imageio | |
def main(args): | |
# torch.manual_seed(args.seed) | |
torch.set_grad_enabled(False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
vae = getae_wrapper(args.ae)(args.model_path, subfolder="vae", cache_dir='cache_dir').to(device, dtype=torch.float16) | |
if args.enable_tiling: | |
vae.vae.enable_tiling() | |
vae.vae.tile_overlap_factor = args.tile_overlap_factor | |
# Load model: | |
transformer_model = LatteT2V.from_pretrained(args.model_path, subfolder=args.version, cache_dir="cache_dir", torch_dtype=torch.float16).to(device) | |
transformer_model.force_images = args.force_images | |
tokenizer = T5Tokenizer.from_pretrained(args.text_encoder_name, cache_dir="cache_dir") | |
text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_name, cache_dir="cache_dir", torch_dtype=torch.float16).to(device) | |
video_length, image_size = transformer_model.config.video_length, int(args.version.split('x')[1]) | |
latent_size = (image_size // ae_stride_config[args.ae][1], image_size // ae_stride_config[args.ae][2]) | |
vae.latent_size = latent_size | |
if args.force_images: | |
video_length = 1 | |
ext = 'jpg' | |
else: | |
ext = 'mp4' | |
# set eval mode | |
transformer_model.eval() | |
vae.eval() | |
text_encoder.eval() | |
if args.sample_method == 'DDIM': ######### | |
scheduler = DDIMScheduler() | |
elif args.sample_method == 'EulerDiscrete': | |
scheduler = EulerDiscreteScheduler() | |
elif args.sample_method == 'DDPM': ############# | |
scheduler = DDPMScheduler() | |
elif args.sample_method == 'DPMSolverMultistep': | |
scheduler = DPMSolverMultistepScheduler() | |
elif args.sample_method == 'DPMSolverSinglestep': | |
scheduler = DPMSolverSinglestepScheduler() | |
elif args.sample_method == 'PNDM': | |
scheduler = PNDMScheduler() | |
elif args.sample_method == 'HeunDiscrete': ######## | |
scheduler = HeunDiscreteScheduler() | |
elif args.sample_method == 'EulerAncestralDiscrete': | |
scheduler = EulerAncestralDiscreteScheduler() | |
elif args.sample_method == 'DEISMultistep': | |
scheduler = DEISMultistepScheduler() | |
elif args.sample_method == 'KDPM2AncestralDiscrete': ######### | |
scheduler = KDPM2AncestralDiscreteScheduler() | |
print('videogen_pipeline', device) | |
videogen_pipeline = VideoGenPipeline(vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
transformer=transformer_model).to(device=device) | |
# videogen_pipeline.enable_xformers_memory_efficient_attention() | |
if not os.path.exists(args.save_img_path): | |
os.makedirs(args.save_img_path) | |
video_grids = [] | |
if not isinstance(args.text_prompt, list): | |
args.text_prompt = [args.text_prompt] | |
if len(args.text_prompt) == 1 and args.text_prompt[0].endswith('txt'): | |
text_prompt = open(args.text_prompt[0], 'r').readlines() | |
args.text_prompt = [i.strip() for i in text_prompt] | |
for prompt in args.text_prompt: | |
print('Processing the ({}) prompt'.format(prompt)) | |
videos = videogen_pipeline(prompt, | |
video_length=video_length, | |
height=image_size, | |
width=image_size, | |
num_inference_steps=args.num_sampling_steps, | |
guidance_scale=args.guidance_scale, | |
enable_temporal_attentions=not args.force_images, | |
num_images_per_prompt=1, | |
mask_feature=True, | |
).video | |
try: | |
if args.force_images: | |
videos = videos[:, 0].permute(0, 3, 1, 2) # b t h w c -> b c h w | |
save_image(videos / 255.0, os.path.join(args.save_img_path, | |
prompt.replace(' ', '_')[:100] + f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'), | |
nrow=1, normalize=True, value_range=(0, 1)) # t c h w | |
else: | |
imageio.mimwrite( | |
os.path.join( | |
args.save_img_path, | |
prompt.replace(' ', '_')[:100] + f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}' | |
), videos[0], | |
fps=args.fps, quality=9) # highest quality is 10, lowest is 0 | |
except: | |
print('Error when saving {}'.format(prompt)) | |
video_grids.append(videos) | |
video_grids = torch.cat(video_grids, dim=0) | |
# torchvision.io.write_video(args.save_img_path + '_%04d' % args.run_time + '-.mp4', video_grids, fps=6) | |
if args.force_images: | |
save_image(video_grids / 255.0, os.path.join(args.save_img_path, f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'), | |
nrow=math.ceil(math.sqrt(len(video_grids))), normalize=True, value_range=(0, 1)) | |
else: | |
video_grids = save_video_grid(video_grids) | |
imageio.mimwrite(os.path.join(args.save_img_path, f'{args.sample_method}_gs{args.guidance_scale}_s{args.num_sampling_steps}.{ext}'), video_grids, fps=args.fps, quality=9) | |
print('save path {}'.format(args.save_img_path)) | |
# save_videos_grid(video, f"./{prompt}.gif") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default='LanguageBind/Open-Sora-Plan-v1.0.0') | |
parser.add_argument("--version", type=str, default='65x512x512', choices=['65x512x512', '65x256x256', '17x256x256']) | |
parser.add_argument("--ae", type=str, default='CausalVAEModel_4x8x8') | |
parser.add_argument("--text_encoder_name", type=str, default='DeepFloyd/t5-v1_1-xxl') | |
parser.add_argument("--save_img_path", type=str, default="./sample_videos/t2v") | |
parser.add_argument("--guidance_scale", type=float, default=7.5) | |
parser.add_argument("--sample_method", type=str, default="PNDM") | |
parser.add_argument("--num_sampling_steps", type=int, default=50) | |
parser.add_argument("--fps", type=int, default=24) | |
parser.add_argument("--run_time", type=int, default=0) | |
parser.add_argument("--text_prompt", nargs='+') | |
parser.add_argument('--force_images', action='store_true') | |
parser.add_argument('--tile_overlap_factor', type=float, default=0.25) | |
parser.add_argument('--enable_tiling', action='store_true') | |
args = parser.parse_args() | |
main(args) |