LinB203
m
a220803
raw
history blame
4.44 kB
import math
import decord
from torch.nn import functional as F
import torch
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG']
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
class DecordInit(object):
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader."""
def __init__(self, num_threads=1):
self.num_threads = num_threads
self.ctx = decord.cpu(0)
def __call__(self, filename):
"""Perform the Decord initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
reader = decord.VideoReader(filename,
ctx=self.ctx,
num_threads=self.num_threads)
return reader
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'sr={self.sr},'
f'num_threads={self.num_threads})')
return repr_str
def pad_to_multiple(number, ds_stride):
remainder = number % ds_stride
if remainder == 0:
return number
else:
padding = ds_stride - remainder
return number + padding
class Collate:
def __init__(self, args):
self.max_image_size = args.max_image_size
self.ae_stride = args.ae_stride
self.ae_stride_t = args.ae_stride_t
self.patch_size = args.patch_size
self.patch_size_t = args.patch_size_t
self.num_frames = args.num_frames
def __call__(self, batch):
unzip = tuple(zip(*batch))
if len(unzip) == 2:
batch_tubes, labels = unzip
labels = torch.as_tensor(labels).to(torch.long)
elif len(unzip) == 3:
batch_tubes, input_ids, cond_mask = unzip
input_ids = torch.stack(input_ids).squeeze(1)
cond_mask = torch.stack(cond_mask).squeeze(1)
else:
raise NotImplementedError
ds_stride = self.ae_stride * self.patch_size
t_ds_stride = self.ae_stride_t * self.patch_size_t
# pad to max multiple of ds_stride
batch_input_size = [i.shape for i in batch_tubes]
max_t, max_h, max_w = self.num_frames, \
self.max_image_size, \
self.max_image_size
pad_max_t, pad_max_h, pad_max_w = pad_to_multiple(max_t, t_ds_stride), \
pad_to_multiple(max_h, ds_stride), \
pad_to_multiple(max_w, ds_stride)
each_pad_t_h_w = [[pad_max_t - i.shape[1],
pad_max_h - i.shape[2],
pad_max_w - i.shape[3]] for i in batch_tubes]
pad_batch_tubes = [F.pad(im,
(0, pad_w,
0, pad_h,
0, pad_t), value=0) for (pad_t, pad_h, pad_w), im in zip(each_pad_t_h_w, batch_tubes)]
pad_batch_tubes = torch.stack(pad_batch_tubes, dim=0)
# make attention_mask
max_tube_size = [pad_max_t, pad_max_h, pad_max_w]
max_latent_size = [max_tube_size[0] // self.ae_stride_t,
max_tube_size[1] // self.ae_stride,
max_tube_size[2] // self.ae_stride]
max_patchify_latent_size = [max_latent_size[0] // self.patch_size_t,
max_latent_size[1] // self.patch_size,
max_latent_size[2] // self.patch_size]
valid_patchify_latent_size = [[int(math.ceil(i[1] / t_ds_stride)),
int(math.ceil(i[2] / ds_stride)),
int(math.ceil(i[3] / ds_stride))] for i in batch_input_size]
attention_mask = [F.pad(torch.ones(i),
(0, max_patchify_latent_size[2] - i[2],
0, max_patchify_latent_size[1] - i[1],
0, max_patchify_latent_size[0] - i[0]), value=0) for i in valid_patchify_latent_size]
attention_mask = torch.stack(attention_mask)
if len(unzip) == 2:
return pad_batch_tubes, labels, attention_mask
elif len(unzip) == 3:
return pad_batch_tubes, attention_mask, input_ids, cond_mask