Spaces:
Runtime error
Runtime error
import math | |
import os | |
from glob import glob | |
import decord | |
import numpy as np | |
import torch | |
import torchvision | |
from decord import VideoReader, cpu | |
from torch.utils.data import Dataset | |
from torchvision.transforms import Compose, Lambda, ToTensor | |
from torchvision.transforms._transforms_video import NormalizeVideo, RandomCropVideo, RandomHorizontalFlipVideo | |
from pytorchvideo.transforms import ApplyTransformToKey, ShortSideScale, UniformTemporalSubsample | |
from torch.nn import functional as F | |
import random | |
from opensora.utils.dataset_utils import DecordInit | |
class Landscope(Dataset): | |
def __init__(self, args, transform, temporal_sample): | |
self.data_path = args.data_path | |
self.num_frames = args.num_frames | |
self.transform = transform | |
self.temporal_sample = temporal_sample | |
self.v_decoder = DecordInit() | |
self.samples = self._make_dataset() | |
self.use_image_num = args.use_image_num | |
self.use_img_from_vid = args.use_img_from_vid | |
if self.use_image_num != 0 and not self.use_img_from_vid: | |
self.img_cap_list = self.get_img_cap_list() | |
def _make_dataset(self): | |
paths = list(glob(os.path.join(self.data_path, '**', '*.mp4'), recursive=True)) | |
return paths | |
def __len__(self): | |
return len(self.samples) | |
def __getitem__(self, idx): | |
video_path = self.samples[idx] | |
try: | |
video = self.tv_read(video_path) | |
video = self.transform(video) # T C H W -> T C H W | |
video = video.transpose(0, 1) # T C H W -> C T H W | |
if self.use_image_num != 0 and self.use_img_from_vid: | |
select_image_idx = np.linspace(0, self.num_frames - 1, self.use_image_num, dtype=int) | |
assert self.num_frames >= self.use_image_num | |
images = video[:, select_image_idx] # c, num_img, h, w | |
video = torch.cat([video, images], dim=1) # c, num_frame+num_img, h, w | |
elif self.use_image_num != 0 and not self.use_img_from_vid: | |
images, captions = self.img_cap_list[idx] | |
raise NotImplementedError | |
else: | |
pass | |
return video, 1 | |
except Exception as e: | |
print(f'Error with {e}, {video_path}') | |
return self.__getitem__(random.randint(0, self.__len__()-1)) | |
def tv_read(self, path): | |
vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='TCHW') | |
total_frames = len(vframes) | |
# Sampling video frames | |
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames) | |
# assert end_frame_ind - start_frame_ind >= self.num_frames | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int) | |
video = vframes[frame_indice] # (T, C, H, W) | |
return video | |
def decord_read(self, path): | |
decord_vr = self.v_decoder(path) | |
total_frames = len(decord_vr) | |
# Sampling video frames | |
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames) | |
# assert end_frame_ind - start_frame_ind >= self.num_frames | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int) | |
video_data = decord_vr.get_batch(frame_indice).asnumpy() | |
video_data = torch.from_numpy(video_data) | |
video_data = video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (T C H W) | |
return video_data | |
def get_img_cap_list(self): | |
raise NotImplementedError | |