Spaces:
Runtime error
Runtime error
import os.path as osp | |
import random | |
from glob import glob | |
from torchvision import transforms | |
import numpy as np | |
import torch | |
import torch.utils.data as data | |
import torch.nn.functional as F | |
from torchvision.transforms import Lambda | |
from ....dataset.transform import ToTensorVideo, CenterCropVideo | |
from ....utils.dataset_utils import DecordInit | |
def TemporalRandomCrop(total_frames, size): | |
""" | |
Performs a random temporal crop on a video sequence. | |
This function randomly selects a continuous frame sequence of length `size` from a video sequence. | |
`total_frames` indicates the total number of frames in the video sequence, and `size` represents the length of the frame sequence to be cropped. | |
Parameters: | |
- total_frames (int): The total number of frames in the video sequence. | |
- size (int): The length of the frame sequence to be cropped. | |
Returns: | |
- (int, int): A tuple containing two integers. The first integer is the starting frame index of the cropped sequence, | |
and the second integer is the ending frame index (inclusive) of the cropped sequence. | |
""" | |
rand_end = max(0, total_frames - size - 1) | |
begin_index = random.randint(0, rand_end) | |
end_index = min(begin_index + size, total_frames) | |
return begin_index, end_index | |
def resize(x, resolution): | |
height, width = x.shape[-2:] | |
resolution = min(2 * resolution, height, width) | |
aspect_ratio = width / height | |
if width <= height: | |
new_width = resolution | |
new_height = int(resolution / aspect_ratio) | |
else: | |
new_height = resolution | |
new_width = int(resolution * aspect_ratio) | |
resized_x = F.interpolate(x, size=(new_height, new_width), mode='bilinear', align_corners=True, antialias=True) | |
return resized_x | |
class VideoDataset(data.Dataset): | |
""" Generic dataset for videos files stored in folders | |
Returns BCTHW videos in the range [-0.5, 0.5] """ | |
video_exts = ['avi', 'mp4', 'webm'] | |
def __init__(self, video_folder, sequence_length, image_folder=None, train=True, resolution=64, sample_rate=1, dynamic_sample=True): | |
self.train = train | |
self.sequence_length = sequence_length | |
self.sample_rate = sample_rate | |
self.resolution = resolution | |
self.v_decoder = DecordInit() | |
self.video_folder = video_folder | |
self.dynamic_sample = dynamic_sample | |
self.transform = transforms.Compose([ | |
ToTensorVideo(), | |
# Lambda(lambda x: resize(x, self.resolution)), | |
CenterCropVideo(self.resolution), | |
Lambda(lambda x: 2.0 * x - 1.0) | |
]) | |
print('Building datasets...') | |
self.samples = self._make_dataset() | |
def _make_dataset(self): | |
samples = [] | |
samples += sum([glob(osp.join(self.video_folder, '**', f'*.{ext}'), recursive=True) | |
for ext in self.video_exts], []) | |
return samples | |
def __len__(self): | |
return len(self.samples) | |
def __getitem__(self, idx): | |
video_path = self.samples[idx] | |
try: | |
video = self.decord_read(video_path) | |
video = self.transform(video) # T C H W -> T C H W | |
video = video.transpose(0, 1) # T C H W -> C T H W | |
return dict(video=video, label="") | |
except Exception as e: | |
print(f'Error with {e}, {video_path}') | |
return self.__getitem__(random.randint(0, self.__len__()-1)) | |
def decord_read(self, path): | |
decord_vr = self.v_decoder(path) | |
total_frames = len(decord_vr) | |
# Sampling video frames | |
if self.dynamic_sample: | |
sample_rate = random.randint(1, self.sample_rate) | |
else: | |
sample_rate = self.sample_rate | |
size = self.sequence_length * sample_rate | |
start_frame_ind, end_frame_ind = TemporalRandomCrop(total_frames, size) | |
# assert end_frame_ind - start_frame_ind >= self.num_frames | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.sequence_length, dtype=int) | |
video_data = decord_vr.get_batch(frame_indice).asnumpy() | |
video_data = torch.from_numpy(video_data) | |
video_data = video_data.permute(0, 3, 1, 2) # (T, H, W, C) -> (T C H W) | |
return video_data |