Spaces:
Runtime error
Runtime error
import re | |
import sys | |
import torch | |
import random | |
import numpy as np | |
from PIL import ImageFile | |
import torch.nn.functional as F | |
from imageio import imread, imwrite | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
class AverageMeter(): | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0. | |
self.avg = 0. | |
self.sum = 0. | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
class AverageMeterGroups: | |
def __init__(self) -> None: | |
self.meter_dict = dict() | |
def update(self, dict, n=1): | |
for name, val in dict.items(): | |
if self.meter_dict.get(name) is None: | |
self.meter_dict[name] = AverageMeter() | |
self.meter_dict[name].update(val, n) | |
def reset(self, name=None): | |
if name is None: | |
for v in self.meter_dict.values(): | |
v.reset() | |
else: | |
meter = self.meter_dict.get(name) | |
if meter is not None: | |
meter.reset() | |
def avg(self, name): | |
meter = self.meter_dict.get(name) | |
if meter is not None: | |
return meter.avg | |
class InputPadder: | |
""" Pads images such that dimensions are divisible by divisor """ | |
def __init__(self, dims, divisor=16): | |
self.ht, self.wd = dims[-2:] | |
pad_ht = (((self.ht // divisor) + 1) * divisor - self.ht) % divisor | |
pad_wd = (((self.wd // divisor) + 1) * divisor - self.wd) % divisor | |
self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2] | |
def pad(self, *inputs): | |
if len(inputs) == 1: | |
return F.pad(inputs[0], self._pad, mode='replicate') | |
else: | |
return [F.pad(x, self._pad, mode='replicate') for x in inputs] | |
def unpad(self, *inputs): | |
if len(inputs) == 1: | |
return self._unpad(inputs[0]) | |
else: | |
return [self._unpad(x) for x in inputs] | |
def _unpad(self, x): | |
ht, wd = x.shape[-2:] | |
c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]] | |
return x[..., c[0]:c[1], c[2]:c[3]] | |
def img2tensor(img): | |
if img.shape[-1] > 3: | |
img = img[:,:,:3] | |
return torch.tensor(img).permute(2, 0, 1).unsqueeze(0) / 255.0 | |
def tensor2img(img_t): | |
return (img_t * 255.).detach( | |
).squeeze(0).permute(1, 2, 0).cpu().numpy( | |
).clip(0, 255).astype(np.uint8) | |
def seed_all(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def read(file): | |
if file.endswith('.float3'): return readFloat(file) | |
elif file.endswith('.flo'): return readFlow(file) | |
elif file.endswith('.ppm'): return readImage(file) | |
elif file.endswith('.pgm'): return readImage(file) | |
elif file.endswith('.png'): return readImage(file) | |
elif file.endswith('.jpg'): return readImage(file) | |
elif file.endswith('.pfm'): return readPFM(file)[0] | |
else: raise Exception('don\'t know how to read %s' % file) | |
def write(file, data): | |
if file.endswith('.float3'): return writeFloat(file, data) | |
elif file.endswith('.flo'): return writeFlow(file, data) | |
elif file.endswith('.ppm'): return writeImage(file, data) | |
elif file.endswith('.pgm'): return writeImage(file, data) | |
elif file.endswith('.png'): return writeImage(file, data) | |
elif file.endswith('.jpg'): return writeImage(file, data) | |
elif file.endswith('.pfm'): return writePFM(file, data) | |
else: raise Exception('don\'t know how to write %s' % file) | |
def readPFM(file): | |
file = open(file, 'rb') | |
color = None | |
width = None | |
height = None | |
scale = None | |
endian = None | |
header = file.readline().rstrip() | |
if header.decode("ascii") == 'PF': | |
color = True | |
elif header.decode("ascii") == 'Pf': | |
color = False | |
else: | |
raise Exception('Not a PFM file.') | |
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii")) | |
if dim_match: | |
width, height = list(map(int, dim_match.groups())) | |
else: | |
raise Exception('Malformed PFM header.') | |
scale = float(file.readline().decode("ascii").rstrip()) | |
if scale < 0: | |
endian = '<' | |
scale = -scale | |
else: | |
endian = '>' | |
data = np.fromfile(file, endian + 'f') | |
shape = (height, width, 3) if color else (height, width) | |
data = np.reshape(data, shape) | |
data = np.flipud(data) | |
return data, scale | |
def writePFM(file, image, scale=1): | |
file = open(file, 'wb') | |
color = None | |
if image.dtype.name != 'float32': | |
raise Exception('Image dtype must be float32.') | |
image = np.flipud(image) | |
if len(image.shape) == 3 and image.shape[2] == 3: | |
color = True | |
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: | |
color = False | |
else: | |
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') | |
file.write('PF\n' if color else 'Pf\n'.encode()) | |
file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0])) | |
endian = image.dtype.byteorder | |
if endian == '<' or endian == '=' and sys.byteorder == 'little': | |
scale = -scale | |
file.write('%f\n'.encode() % scale) | |
image.tofile(file) | |
def readFlow(name): | |
if name.endswith('.pfm') or name.endswith('.PFM'): | |
return readPFM(name)[0][:,:,0:2] | |
f = open(name, 'rb') | |
header = f.read(4) | |
if header.decode("utf-8") != 'PIEH': | |
raise Exception('Flow file header does not contain PIEH') | |
width = np.fromfile(f, np.int32, 1).squeeze() | |
height = np.fromfile(f, np.int32, 1).squeeze() | |
flow = np.fromfile(f, np.float32, width * height * 2).reshape((height, width, 2)) | |
return flow.astype(np.float32) | |
def readImage(name): | |
if name.endswith('.pfm') or name.endswith('.PFM'): | |
data = readPFM(name)[0] | |
if len(data.shape)==3: | |
return data[:,:,0:3] | |
else: | |
return data | |
return imread(name) | |
def writeImage(name, data): | |
if name.endswith('.pfm') or name.endswith('.PFM'): | |
return writePFM(name, data, 1) | |
return imwrite(name, data) | |
def writeFlow(name, flow): | |
f = open(name, 'wb') | |
f.write('PIEH'.encode('utf-8')) | |
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f) | |
flow = flow.astype(np.float32) | |
flow.tofile(f) | |
def readFloat(name): | |
f = open(name, 'rb') | |
if(f.readline().decode("utf-8")) != 'float\n': | |
raise Exception('float file %s did not contain <float> keyword' % name) | |
dim = int(f.readline()) | |
dims = [] | |
count = 1 | |
for i in range(0, dim): | |
d = int(f.readline()) | |
dims.append(d) | |
count *= d | |
dims = list(reversed(dims)) | |
data = np.fromfile(f, np.float32, count).reshape(dims) | |
if dim > 2: | |
data = np.transpose(data, (2, 1, 0)) | |
data = np.transpose(data, (1, 0, 2)) | |
return data | |
def writeFloat(name, data): | |
f = open(name, 'wb') | |
dim=len(data.shape) | |
if dim>3: | |
raise Exception('bad float file dimension: %d' % dim) | |
f.write(('float\n').encode('ascii')) | |
f.write(('%d\n' % dim).encode('ascii')) | |
if dim == 1: | |
f.write(('%d\n' % data.shape[0]).encode('ascii')) | |
else: | |
f.write(('%d\n' % data.shape[1]).encode('ascii')) | |
f.write(('%d\n' % data.shape[0]).encode('ascii')) | |
for i in range(2, dim): | |
f.write(('%d\n' % data.shape[i]).encode('ascii')) | |
data = data.astype(np.float32) | |
if dim==2: | |
data.tofile(f) | |
else: | |
np.transpose(data, (2, 0, 1)).tofile(f) | |
def check_dim_and_resize(tensor_list): | |
shape_list = [] | |
for t in tensor_list: | |
shape_list.append(t.shape[2:]) | |
if len(set(shape_list)) > 1: | |
desired_shape = shape_list[0] | |
print(f'Inconsistent size of input video frames. All frames will be resized to {desired_shape}') | |
resize_tensor_list = [] | |
for t in tensor_list: | |
resize_tensor_list.append(torch.nn.functional.interpolate(t, size=tuple(desired_shape), mode='bilinear')) | |
tensor_list = resize_tensor_list | |
return tensor_list | |