LinB203
m
a220803
import argparse
import random
import torch
import yaml
from collections import OrderedDict
from os import path as osp
from basicsr.utils import set_random_seed
from basicsr.utils.dist_util import get_dist_info, init_dist, master_only
def ordered_yaml():
"""Support OrderedDict for yaml.
Returns:
yaml Loader and Dumper.
"""
try:
from yaml import CDumper as Dumper
from yaml import CLoader as Loader
except ImportError:
from yaml import Dumper, Loader
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
def dict_representer(dumper, data):
return dumper.represent_dict(data.items())
def dict_constructor(loader, node):
return OrderedDict(loader.construct_pairs(node))
Dumper.add_representer(OrderedDict, dict_representer)
Loader.add_constructor(_mapping_tag, dict_constructor)
return Loader, Dumper
def dict2str(opt, indent_level=1):
"""dict to string for printing options.
Args:
opt (dict): Option dict.
indent_level (int): Indent level. Default: 1.
Return:
(str): Option string for printing.
"""
msg = '\n'
for k, v in opt.items():
if isinstance(v, dict):
msg += ' ' * (indent_level * 2) + k + ':['
msg += dict2str(v, indent_level + 1)
msg += ' ' * (indent_level * 2) + ']\n'
else:
msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n'
return msg
def _postprocess_yml_value(value):
# None
if value == '~' or value.lower() == 'none':
return None
# bool
if value.lower() == 'true':
return True
elif value.lower() == 'false':
return False
# !!float number
if value.startswith('!!float'):
return float(value.replace('!!float', ''))
# number
if value.isdigit():
return int(value)
elif value.replace('.', '', 1).isdigit() and value.count('.') < 2:
return float(value)
# list
if value.startswith('['):
return eval(value)
# str
return value
def parse_options(root_path, SR, is_train=True):
parser = argparse.ArgumentParser()
# parser.add_argument('-opt', type=str, default = 'options/test/test_RGT_S_x2.yml',required=True, help='Path to option YAML file.')
if SR == 'x4':
file_path = osp.join(root_path,'options/test/test_RGT_x4.yml')
if SR == 'x2':
file_path = osp.join(root_path,'options/test/test_RGT_x2.yml')
parser.add_argument('-opt', type=str, default = file_path, help='Path to option YAML file.')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--force_yml', nargs='+', default=None, help='Force to update yml files. Examples: train:ema_decay=0.999')
args = parser.parse_args()
# parse yml to dict
with open(args.opt, mode='r') as f:
# print(args.opt)
opt = yaml.load(f, Loader=ordered_yaml()[0])
# distributed settings
if args.launcher == 'none':
opt['dist'] = False
print('Disable distributed.', flush=True)
else:
opt['dist'] = True
if args.launcher == 'slurm' and 'dist_params' in opt:
init_dist(args.launcher, **opt['dist_params'])
else:
init_dist(args.launcher)
opt['rank'], opt['world_size'] = get_dist_info()
# random seed
seed = opt.get('manual_seed')
if seed is None:
seed = random.randint(1, 10000)
opt['manual_seed'] = seed
set_random_seed(seed + opt['rank'])
# force to update yml options
if args.force_yml is not None:
for entry in args.force_yml:
# now do not support creating new keys
keys, value = entry.split('=')
keys, value = keys.strip(), value.strip()
value = _postprocess_yml_value(value)
eval_str = 'opt'
for key in keys.split(':'):
eval_str += f'["{key}"]'
eval_str += '=value'
# using exec function
exec(eval_str)
opt['auto_resume'] = args.auto_resume
opt['is_train'] = is_train
# debug setting
if args.debug and not opt['name'].startswith('debug'):
opt['name'] = 'debug_' + opt['name']
if opt['num_gpu'] == 'auto':
opt['num_gpu'] = torch.cuda.device_count()
# datasets
for phase, dataset in opt['datasets'].items():
# for multiple datasets, e.g., val_1, val_2; test_1, test_2
phase = phase.split('_')[0]
dataset['phase'] = phase
if 'scale' in opt:
dataset['scale'] = opt['scale']
if dataset.get('dataroot_gt') is not None:
dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt'])
if dataset.get('dataroot_lq') is not None:
dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq'])
# paths
for key, val in opt['path'].items():
if (val is not None) and ('resume_state' in key or 'pretrain_network' in key):
opt['path'][key] = osp.expanduser(val)
if is_train:
experiments_root = osp.join(root_path, 'experiments', opt['name'])
opt['path']['experiments_root'] = experiments_root
opt['path']['models'] = osp.join(experiments_root, 'models')
opt['path']['training_states'] = osp.join(experiments_root, 'training_states')
opt['path']['log'] = experiments_root
opt['path']['visualization'] = osp.join(experiments_root, 'visualization')
# change some options for debug mode
if 'debug' in opt['name']:
if 'val' in opt:
opt['val']['val_freq'] = 8
opt['logger']['print_freq'] = 1
opt['logger']['save_checkpoint_freq'] = 8
else: # test
results_root = osp.join(root_path, 'results', opt['name'])
opt['path']['results_root'] = results_root
opt['path']['log'] = results_root
opt['path']['visualization'] = osp.join(results_root, 'visualization')
return opt, args
@master_only
def copy_opt_file(opt_file, experiments_root):
# copy the yml file to the experiment root
import sys
import time
from shutil import copyfile
cmd = ' '.join(sys.argv)
filename = osp.join(experiments_root, osp.basename(opt_file))
copyfile(opt_file, filename)
with open(filename, 'r+') as f:
lines = f.readlines()
lines.insert(0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n')
f.seek(0)
f.writelines(lines)