Spaces:
Runtime error
Runtime error
import argparse | |
import random | |
import torch | |
import yaml | |
from collections import OrderedDict | |
from os import path as osp | |
from basicsr.utils import set_random_seed | |
from basicsr.utils.dist_util import get_dist_info, init_dist, master_only | |
def ordered_yaml(): | |
"""Support OrderedDict for yaml. | |
Returns: | |
yaml Loader and Dumper. | |
""" | |
try: | |
from yaml import CDumper as Dumper | |
from yaml import CLoader as Loader | |
except ImportError: | |
from yaml import Dumper, Loader | |
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG | |
def dict_representer(dumper, data): | |
return dumper.represent_dict(data.items()) | |
def dict_constructor(loader, node): | |
return OrderedDict(loader.construct_pairs(node)) | |
Dumper.add_representer(OrderedDict, dict_representer) | |
Loader.add_constructor(_mapping_tag, dict_constructor) | |
return Loader, Dumper | |
def dict2str(opt, indent_level=1): | |
"""dict to string for printing options. | |
Args: | |
opt (dict): Option dict. | |
indent_level (int): Indent level. Default: 1. | |
Return: | |
(str): Option string for printing. | |
""" | |
msg = '\n' | |
for k, v in opt.items(): | |
if isinstance(v, dict): | |
msg += ' ' * (indent_level * 2) + k + ':[' | |
msg += dict2str(v, indent_level + 1) | |
msg += ' ' * (indent_level * 2) + ']\n' | |
else: | |
msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n' | |
return msg | |
def _postprocess_yml_value(value): | |
# None | |
if value == '~' or value.lower() == 'none': | |
return None | |
# bool | |
if value.lower() == 'true': | |
return True | |
elif value.lower() == 'false': | |
return False | |
# !!float number | |
if value.startswith('!!float'): | |
return float(value.replace('!!float', '')) | |
# number | |
if value.isdigit(): | |
return int(value) | |
elif value.replace('.', '', 1).isdigit() and value.count('.') < 2: | |
return float(value) | |
# list | |
if value.startswith('['): | |
return eval(value) | |
# str | |
return value | |
def parse_options(root_path, SR, is_train=True): | |
parser = argparse.ArgumentParser() | |
# parser.add_argument('-opt', type=str, default = 'options/test/test_RGT_S_x2.yml',required=True, help='Path to option YAML file.') | |
if SR == 'x4': | |
file_path = osp.join(root_path,'options/test/test_RGT_x4.yml') | |
if SR == 'x2': | |
file_path = osp.join(root_path,'options/test/test_RGT_x2.yml') | |
parser.add_argument('-opt', type=str, default = file_path, help='Path to option YAML file.') | |
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher') | |
parser.add_argument('--auto_resume', action='store_true') | |
parser.add_argument('--debug', action='store_true') | |
parser.add_argument('--local_rank', type=int, default=0) | |
parser.add_argument( | |
'--force_yml', nargs='+', default=None, help='Force to update yml files. Examples: train:ema_decay=0.999') | |
args = parser.parse_args() | |
# parse yml to dict | |
with open(args.opt, mode='r') as f: | |
# print(args.opt) | |
opt = yaml.load(f, Loader=ordered_yaml()[0]) | |
# distributed settings | |
if args.launcher == 'none': | |
opt['dist'] = False | |
print('Disable distributed.', flush=True) | |
else: | |
opt['dist'] = True | |
if args.launcher == 'slurm' and 'dist_params' in opt: | |
init_dist(args.launcher, **opt['dist_params']) | |
else: | |
init_dist(args.launcher) | |
opt['rank'], opt['world_size'] = get_dist_info() | |
# random seed | |
seed = opt.get('manual_seed') | |
if seed is None: | |
seed = random.randint(1, 10000) | |
opt['manual_seed'] = seed | |
set_random_seed(seed + opt['rank']) | |
# force to update yml options | |
if args.force_yml is not None: | |
for entry in args.force_yml: | |
# now do not support creating new keys | |
keys, value = entry.split('=') | |
keys, value = keys.strip(), value.strip() | |
value = _postprocess_yml_value(value) | |
eval_str = 'opt' | |
for key in keys.split(':'): | |
eval_str += f'["{key}"]' | |
eval_str += '=value' | |
# using exec function | |
exec(eval_str) | |
opt['auto_resume'] = args.auto_resume | |
opt['is_train'] = is_train | |
# debug setting | |
if args.debug and not opt['name'].startswith('debug'): | |
opt['name'] = 'debug_' + opt['name'] | |
if opt['num_gpu'] == 'auto': | |
opt['num_gpu'] = torch.cuda.device_count() | |
# datasets | |
for phase, dataset in opt['datasets'].items(): | |
# for multiple datasets, e.g., val_1, val_2; test_1, test_2 | |
phase = phase.split('_')[0] | |
dataset['phase'] = phase | |
if 'scale' in opt: | |
dataset['scale'] = opt['scale'] | |
if dataset.get('dataroot_gt') is not None: | |
dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt']) | |
if dataset.get('dataroot_lq') is not None: | |
dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq']) | |
# paths | |
for key, val in opt['path'].items(): | |
if (val is not None) and ('resume_state' in key or 'pretrain_network' in key): | |
opt['path'][key] = osp.expanduser(val) | |
if is_train: | |
experiments_root = osp.join(root_path, 'experiments', opt['name']) | |
opt['path']['experiments_root'] = experiments_root | |
opt['path']['models'] = osp.join(experiments_root, 'models') | |
opt['path']['training_states'] = osp.join(experiments_root, 'training_states') | |
opt['path']['log'] = experiments_root | |
opt['path']['visualization'] = osp.join(experiments_root, 'visualization') | |
# change some options for debug mode | |
if 'debug' in opt['name']: | |
if 'val' in opt: | |
opt['val']['val_freq'] = 8 | |
opt['logger']['print_freq'] = 1 | |
opt['logger']['save_checkpoint_freq'] = 8 | |
else: # test | |
results_root = osp.join(root_path, 'results', opt['name']) | |
opt['path']['results_root'] = results_root | |
opt['path']['log'] = results_root | |
opt['path']['visualization'] = osp.join(results_root, 'visualization') | |
return opt, args | |
def copy_opt_file(opt_file, experiments_root): | |
# copy the yml file to the experiment root | |
import sys | |
import time | |
from shutil import copyfile | |
cmd = ' '.join(sys.argv) | |
filename = osp.join(experiments_root, osp.basename(opt_file)) | |
copyfile(opt_file, filename) | |
with open(filename, 'r+') as f: | |
lines = f.readlines() | |
lines.insert(0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n') | |
f.seek(0) | |
f.writelines(lines) | |