import logging import torch from os import path as osp from basicsr.data import build_dataloader, build_dataset from basicsr.models import build_model from basicsr.utils import get_root_logger, get_time_str, make_exp_dirs from basicsr.utils.options import dict2str, parse_options def image_sr(args): # parse options, set distributed setting, set ramdom seed opt, _ = parse_options(args.root_path, is_train=False) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True # create test dataset and dataloader test_loaders = [] for _, dataset_opt in sorted(opt['datasets'].items()): dataset_opt['dataroot_lq'] = osp.join(args.output_dir, f'temp_LR') if args.SR == 'x4': opt['upscale'] = opt['network_g']['upscale'] = 4 opt['val']['suffix'] = 'x4' opt['path']['pretrain_network_g'] = osp.join(args.root_path, f'experiments/pretrained_models/RGT_x4.pth') if args.SR == 'x2': opt['upscale'] = opt['network_g']['upscale'] = 2 opt['val']['suffix'] = 'x2' test_set = build_dataset(dataset_opt) test_loader = build_dataloader( test_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed']) test_loaders.append(test_loader) opt['path']['pretrain_network_g'] = args.ckpt_path opt['val']['use_chop'] = args.use_chop opt['path']['visualization'] = osp.join(args.output_dir, f'temp_results') opt['path']['results_root'] = osp.join(args.output_dir, f'temp_results') # create model model = build_model(opt) for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] model.validation(test_loader, current_iter=opt['name'], tb_logger=None, save_img=opt['val']['save_img']) if __name__ == '__main__': root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir)) # print(root_path) # image_sr(root_path)