import argparse import sys import os import random import imageio import torch from diffusers import PNDMScheduler from huggingface_hub import hf_hub_download from torchvision.utils import save_image from diffusers.models import AutoencoderKL from datetime import datetime from typing import List, Union import gradio as gr import numpy as np from gradio.components import Textbox, Video, Image from transformers import T5Tokenizer, T5EncoderModel from opensora.models.ae import ae_stride_config, getae, getae_wrapper from opensora.models.ae.videobase import CausalVQVAEModelWrapper, CausalVAEModelWrapper from opensora.models.diffusion.latte.modeling_latte import LatteT2V from opensora.sample.pipeline_videogen import VideoGenPipeline from opensora.serve.gradio_utils import block_css, title_markdown, randomize_seed_fn, set_env, examples, DESCRIPTION @torch.inference_mode() def generate_img(prompt, sample_steps, scale, seed=0, randomize_seed=False, force_images=False): seed = int(randomize_seed_fn(seed, randomize_seed)) set_env(seed) video_length = transformer_model.config.video_length if not force_images else 1 height, width = int(args.version.split('x')[1]), int(args.version.split('x')[2]) num_frames = 1 if video_length == 1 else int(args.version.split('x')[0]) videos = videogen_pipeline(prompt, video_length=video_length, height=height, width=width, num_inference_steps=sample_steps, guidance_scale=scale, enable_temporal_attentions=not force_images, num_images_per_prompt=1, mask_feature=True, ).video torch.cuda.empty_cache() videos = videos[0] tmp_save_path = 'tmp.mp4' imageio.mimwrite(tmp_save_path, videos, fps=24, quality=9) # highest quality is 10, lowest is 0 display_model_info = f"Video size: {num_frames}×{height}×{width}, \nSampling Step: {sample_steps}, \nGuidance Scale: {scale}" return tmp_save_path, prompt, display_model_info, seed if __name__ == '__main__': args = type('args', (), { 'ae': 'CausalVAEModel_4x8x8', 'force_images': False, 'model_path': 'LanguageBind/Open-Sora-Plan-v1.0.0', 'text_encoder_name': 'DeepFloyd/t5-v1_1-xxl', 'version': '65x512x512' }) device = torch.device('cuda:0') # Load model: transformer_model = LatteT2V.from_pretrained(args.model_path, subfolder=args.version, torch_dtype=torch.float16, cache_dir='cache_dir').to(device) vae = getae_wrapper(args.ae)(args.model_path, subfolder="vae", cache_dir='cache_dir').to(device, dtype=torch.float16) vae.vae.enable_tiling() image_size = int(args.version.split('x')[1]) latent_size = (image_size // ae_stride_config[args.ae][1], image_size // ae_stride_config[args.ae][2]) vae.latent_size = latent_size transformer_model.force_images = args.force_images tokenizer = T5Tokenizer.from_pretrained(args.text_encoder_name, cache_dir="cache_dir") text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_name, cache_dir="cache_dir", torch_dtype=torch.float16).to(device) # set eval mode transformer_model.eval() vae.eval() text_encoder.eval() scheduler = PNDMScheduler() videogen_pipeline = VideoGenPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, transformer=transformer_model).to(device=device) demo = gr.Interface( fn=generate_img, inputs=[Textbox(label="", placeholder="Please enter your prompt. \n"), gr.Slider( label='Sample Steps', minimum=1, maximum=500, value=50, step=10 ), gr.Slider( label='Guidance Scale', minimum=0.1, maximum=30.0, value=10.0, step=0.1 ), gr.Slider( label="Seed", minimum=0, maximum=203279, step=1, value=0, ), gr.Checkbox(label="Randomize seed", value=True), gr.Checkbox(label="Generate image (1 frame video)", value=False), ], outputs=[Video(label="Vid", width=512, height=512), Textbox(label="input prompt"), Textbox(label="model info"), gr.Slider(label='seed')], title=title_markdown, description=DESCRIPTION, theme=gr.themes.Default(), css=block_css, examples=examples, ) demo.launch()