|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import xformers.ops |
|
from einops import rearrange |
|
from timm.models.vision_transformer import Mlp |
|
|
|
from opensora.acceleration.communications import all_to_all, split_forward_gather_backward |
|
from opensora.acceleration.parallel_states import get_sequence_parallel_group |
|
|
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
|
|
|
|
def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool, use_kernel: bool): |
|
if use_kernel: |
|
try: |
|
from apex.normalization import FusedLayerNorm |
|
|
|
return FusedLayerNorm(hidden_size, elementwise_affine=affine, eps=eps) |
|
except ImportError: |
|
raise RuntimeError("FusedLayerNorm not available. Please install apex.") |
|
else: |
|
return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine) |
|
|
|
|
|
def modulate(norm_func, x, shift, scale): |
|
|
|
dtype = x.dtype |
|
x = norm_func(x.to(torch.float32)).to(dtype) |
|
x = x * (scale.unsqueeze(1) + 1) + shift.unsqueeze(1) |
|
x = x.to(dtype) |
|
return x |
|
|
|
|
|
def t2i_modulate(x, shift, scale): |
|
return x * (1 + scale) + shift |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PatchEmbed3D(nn.Module): |
|
"""Video to Patch Embedding. |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: (2,4,4). |
|
in_chans (int): Number of input video channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__( |
|
self, |
|
patch_size=(2, 4, 4), |
|
in_chans=3, |
|
embed_dim=96, |
|
norm_layer=None, |
|
flatten=True, |
|
): |
|
super().__init__() |
|
self.patch_size = patch_size |
|
self.flatten = flatten |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, D, H, W = x.size() |
|
if W % self.patch_size[2] != 0: |
|
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) |
|
if H % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) |
|
if D % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
D, Wh, Ww = x.size(2), x.size(3), x.size(4) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
enable_flashattn: bool = False, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim**-0.5 |
|
self.enable_flashattn = enable_flashattn |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, N, C = x.shape |
|
qkv = self.qkv(x) |
|
qkv_shape = (B, N, 3, self.num_heads, self.head_dim) |
|
if self.enable_flashattn: |
|
qkv_permute_shape = (2, 0, 1, 3, 4) |
|
else: |
|
qkv_permute_shape = (2, 0, 3, 1, 4) |
|
qkv = qkv.view(qkv_shape).permute(qkv_permute_shape) |
|
q, k, v = qkv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
if self.enable_flashattn: |
|
from flash_attn import flash_attn_func |
|
|
|
x = flash_attn_func( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
softmax_scale=self.scale, |
|
) |
|
else: |
|
dtype = q.dtype |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.to(torch.float32) |
|
attn = attn.softmax(dim=-1) |
|
attn = attn.to(dtype) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x_output_shape = (B, N, C) |
|
if not self.enable_flashattn: |
|
x = x.transpose(1, 2) |
|
x = x.reshape(x_output_shape) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SeqParallelAttention(Attention): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
enable_flashattn: bool = False, |
|
) -> None: |
|
super().__init__( |
|
dim=dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_norm=qk_norm, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
norm_layer=norm_layer, |
|
enable_flashattn=enable_flashattn, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, N, C = x.shape |
|
qkv = self.qkv(x) |
|
qkv_shape = (B, N, 3, self.num_heads, self.head_dim) |
|
|
|
qkv = qkv.view(qkv_shape) |
|
|
|
sp_group = get_sequence_parallel_group() |
|
|
|
|
|
|
|
qkv = all_to_all(qkv, sp_group, scatter_dim=3, gather_dim=1) |
|
|
|
if self.enable_flashattn: |
|
qkv_permute_shape = (2, 0, 1, 3, 4) |
|
else: |
|
qkv_permute_shape = (2, 0, 3, 1, 4) |
|
qkv = qkv.permute(qkv_permute_shape) |
|
|
|
q, k, v = qkv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
if self.enable_flashattn: |
|
from flash_attn import flash_attn_func |
|
|
|
x = flash_attn_func( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
softmax_scale=self.scale, |
|
) |
|
else: |
|
dtype = q.dtype |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.to(torch.float32) |
|
attn = attn.softmax(dim=-1) |
|
attn = attn.to(dtype) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
if not self.enable_flashattn: |
|
x = x.transpose(1, 2) |
|
|
|
|
|
|
|
x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2) |
|
|
|
|
|
x_output_shape = (B, N, C) |
|
x = x.reshape(x_output_shape) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class MultiHeadCrossAttention(nn.Module): |
|
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): |
|
super(MultiHeadCrossAttention, self).__init__() |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
|
|
self.q_linear = nn.Linear(d_model, d_model) |
|
self.kv_linear = nn.Linear(d_model, d_model * 2) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(d_model, d_model) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, cond, mask=None): |
|
|
|
B, N, C = x.shape |
|
|
|
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) |
|
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) |
|
k, v = kv.unbind(2) |
|
|
|
attn_bias = None |
|
if mask is not None: |
|
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) |
|
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) |
|
|
|
x = x.view(B, -1, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SeqParallelMultiHeadCrossAttention(MultiHeadCrossAttention): |
|
def __init__( |
|
self, |
|
d_model, |
|
num_heads, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
): |
|
super().__init__(d_model=d_model, num_heads=num_heads, attn_drop=attn_drop, proj_drop=proj_drop) |
|
|
|
def forward(self, x, cond, mask=None): |
|
|
|
sp_group = get_sequence_parallel_group() |
|
sp_size = dist.get_world_size(sp_group) |
|
B, SUB_N, C = x.shape |
|
N = SUB_N * sp_size |
|
|
|
|
|
|
|
q = self.q_linear(x).view(B, -1, self.num_heads, self.head_dim) |
|
kv = self.kv_linear(cond).view(B, -1, 2, self.num_heads, self.head_dim) |
|
k, v = kv.unbind(2) |
|
|
|
|
|
q = all_to_all(q, sp_group, scatter_dim=2, gather_dim=1) |
|
|
|
k = split_forward_gather_backward(k, get_sequence_parallel_group(), dim=2, grad_scale="down") |
|
v = split_forward_gather_backward(v, get_sequence_parallel_group(), dim=2, grad_scale="down") |
|
|
|
q = q.view(1, -1, self.num_heads // sp_size, self.head_dim) |
|
k = k.view(1, -1, self.num_heads // sp_size, self.head_dim) |
|
v = v.view(1, -1, self.num_heads // sp_size, self.head_dim) |
|
|
|
|
|
attn_bias = None |
|
if mask is not None: |
|
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) |
|
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) |
|
|
|
|
|
x = x.view(B, -1, self.num_heads // sp_size, self.head_dim) |
|
x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2) |
|
|
|
|
|
x = x.view(B, -1, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of DiT. |
|
""" |
|
|
|
def __init__(self, hidden_size, num_patch, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final, x, shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class T2IFinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
|
|
def __init__(self, hidden_size, num_patch, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) |
|
self.out_channels = out_channels |
|
|
|
def forward(self, x, t): |
|
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) |
|
x = t2i_modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half) |
|
freqs = freqs.to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t, dtype): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
if t_freq.dtype != dtype: |
|
t_freq = t_freq.to(dtype) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class LabelEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__(self, num_classes, hidden_size, dropout_prob): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) |
|
self.num_classes = num_classes |
|
self.dropout_prob = dropout_prob |
|
|
|
def token_drop(self, labels, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
labels = torch.where(drop_ids, self.num_classes, labels) |
|
return labels |
|
|
|
def forward(self, labels, train, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
labels = self.token_drop(labels, force_drop_ids) |
|
return self.embedding_table(labels) |
|
|
|
|
|
class SizeEmbedder(TimestepEmbedder): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
self.outdim = hidden_size |
|
|
|
def forward(self, s, bs): |
|
if s.ndim == 1: |
|
s = s[:, None] |
|
assert s.ndim == 2 |
|
if s.shape[0] != bs: |
|
s = s.repeat(bs // s.shape[0], 1) |
|
assert s.shape[0] == bs |
|
b, dims = s.shape[0], s.shape[1] |
|
s = rearrange(s, "b d -> (b d)") |
|
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) |
|
s_emb = self.mlp(s_freq) |
|
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) |
|
return s_emb |
|
|
|
@property |
|
def dtype(self): |
|
return next(self.parameters()).dtype |
|
|
|
|
|
class CaptionEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120): |
|
super().__init__() |
|
self.y_proj = Mlp( |
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 |
|
) |
|
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5)) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None): |
|
if train: |
|
assert caption.shape[2:] == self.y_embedding.shape |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
caption = self.token_drop(caption, force_drop_ids) |
|
caption = self.y_proj(caption) |
|
return caption |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
if not isinstance(grid_size, tuple): |
|
grid_size = (grid_size, grid_size) |
|
|
|
grid_h = np.arange(grid_size[0], dtype=np.float32) / scale |
|
grid_w = np.arange(grid_size[1], dtype=np.float32) / scale |
|
if base_size is not None: |
|
grid_h *= base_size / grid_size[0] |
|
grid_w *= base_size / grid_size[1] |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token and extra_tokens > 0: |
|
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0): |
|
pos = np.arange(0, length)[..., None] / scale |
|
return get_1d_sincos_pos_embed_from_grid(embed_dim, pos) |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float64) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|