|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from timm.models.layers import DropPath |
|
from timm.models.vision_transformer import Mlp |
|
|
|
from opensora.acceleration.checkpoint import auto_grad_checkpoint |
|
from opensora.acceleration.communications import gather_forward_split_backward, split_forward_gather_backward |
|
from opensora.acceleration.parallel_states import get_sequence_parallel_group |
|
from opensora.models.layers.blocks import ( |
|
Attention, |
|
CaptionEmbedder, |
|
MultiHeadCrossAttention, |
|
PatchEmbed3D, |
|
SeqParallelAttention, |
|
SeqParallelMultiHeadCrossAttention, |
|
T2IFinalLayer, |
|
TimestepEmbedder, |
|
approx_gelu, |
|
get_1d_sincos_pos_embed, |
|
get_2d_sincos_pos_embed, |
|
get_layernorm, |
|
t2i_modulate, |
|
) |
|
from opensora.registry import MODELS |
|
from opensora.utils.ckpt_utils import load_checkpoint |
|
|
|
|
|
class STDiTBlock(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size, |
|
num_heads, |
|
d_s=None, |
|
d_t=None, |
|
mlp_ratio=4.0, |
|
drop_path=0.0, |
|
enable_flashattn=False, |
|
enable_layernorm_kernel=False, |
|
enable_sequence_parallelism=False, |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.enable_flashattn = enable_flashattn |
|
self._enable_sequence_parallelism = enable_sequence_parallelism |
|
|
|
if enable_sequence_parallelism: |
|
self.attn_cls = SeqParallelAttention |
|
self.mha_cls = SeqParallelMultiHeadCrossAttention |
|
else: |
|
self.attn_cls = Attention |
|
self.mha_cls = MultiHeadCrossAttention |
|
|
|
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) |
|
self.attn = self.attn_cls( |
|
hidden_size, |
|
num_heads=num_heads, |
|
qkv_bias=True, |
|
enable_flashattn=enable_flashattn, |
|
) |
|
self.cross_attn = self.mha_cls(hidden_size, num_heads) |
|
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) |
|
self.mlp = Mlp( |
|
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) |
|
|
|
|
|
self.d_s = d_s |
|
self.d_t = d_t |
|
|
|
if self._enable_sequence_parallelism: |
|
sp_size = dist.get_world_size(get_sequence_parallel_group()) |
|
|
|
assert d_t % sp_size == 0 |
|
self.d_t = d_t // sp_size |
|
|
|
self.attn_temp = self.attn_cls( |
|
hidden_size, |
|
num_heads=num_heads, |
|
qkv_bias=True, |
|
enable_flashattn=self.enable_flashattn, |
|
) |
|
|
|
def forward(self, x, y, t, mask=None, tpe=None): |
|
B, N, C = x.shape |
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + t.reshape(B, 6, -1) |
|
).chunk(6, dim=1) |
|
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa) |
|
|
|
|
|
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=self.d_t, S=self.d_s) |
|
x_s = self.attn(x_s) |
|
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=self.d_t, S=self.d_s) |
|
x = x + self.drop_path(gate_msa * x_s) |
|
|
|
|
|
x_t = rearrange(x, "B (T S) C -> (B S) T C", T=self.d_t, S=self.d_s) |
|
if tpe is not None: |
|
x_t = x_t + tpe |
|
x_t = self.attn_temp(x_t) |
|
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=self.d_t, S=self.d_s) |
|
x = x + self.drop_path(gate_msa * x_t) |
|
|
|
|
|
x = x + self.cross_attn(x, y, mask) |
|
|
|
|
|
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) |
|
|
|
return x |
|
|
|
|
|
@MODELS.register_module() |
|
class STDiT(nn.Module): |
|
def __init__( |
|
self, |
|
input_size=(1, 32, 32), |
|
in_channels=4, |
|
patch_size=(1, 2, 2), |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
class_dropout_prob=0.1, |
|
pred_sigma=True, |
|
drop_path=0.0, |
|
no_temporal_pos_emb=False, |
|
caption_channels=4096, |
|
model_max_length=120, |
|
dtype=torch.float32, |
|
space_scale=1.0, |
|
time_scale=1.0, |
|
freeze=None, |
|
enable_flashattn=False, |
|
enable_layernorm_kernel=False, |
|
enable_sequence_parallelism=False, |
|
): |
|
super().__init__() |
|
self.pred_sigma = pred_sigma |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels * 2 if pred_sigma else in_channels |
|
self.hidden_size = hidden_size |
|
self.patch_size = patch_size |
|
self.input_size = input_size |
|
num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)]) |
|
self.num_patches = num_patches |
|
self.num_temporal = input_size[0] // patch_size[0] |
|
self.num_spatial = num_patches // self.num_temporal |
|
self.num_heads = num_heads |
|
self.dtype = dtype |
|
self.no_temporal_pos_emb = no_temporal_pos_emb |
|
self.depth = depth |
|
self.mlp_ratio = mlp_ratio |
|
self.enable_flashattn = enable_flashattn |
|
self.enable_layernorm_kernel = enable_layernorm_kernel |
|
self.space_scale = space_scale |
|
self.time_scale = time_scale |
|
|
|
self.register_buffer("pos_embed", self.get_spatial_pos_embed()) |
|
self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed()) |
|
|
|
self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size) |
|
self.t_embedder = TimestepEmbedder(hidden_size) |
|
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) |
|
self.y_embedder = CaptionEmbedder( |
|
in_channels=caption_channels, |
|
hidden_size=hidden_size, |
|
uncond_prob=class_dropout_prob, |
|
act_layer=approx_gelu, |
|
token_num=model_max_length, |
|
) |
|
|
|
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] |
|
self.blocks = nn.ModuleList( |
|
[ |
|
STDiTBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=self.mlp_ratio, |
|
drop_path=drop_path[i], |
|
enable_flashattn=self.enable_flashattn, |
|
enable_layernorm_kernel=self.enable_layernorm_kernel, |
|
enable_sequence_parallelism=enable_sequence_parallelism, |
|
d_t=self.num_temporal, |
|
d_s=self.num_spatial, |
|
) |
|
for i in range(self.depth) |
|
] |
|
) |
|
self.final_layer = T2IFinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels) |
|
|
|
|
|
self.initialize_weights() |
|
self.initialize_temporal() |
|
if freeze is not None: |
|
assert freeze in ["not_temporal", "text"] |
|
if freeze == "not_temporal": |
|
self.freeze_not_temporal() |
|
elif freeze == "text": |
|
self.freeze_text() |
|
|
|
|
|
self.enable_sequence_parallelism = enable_sequence_parallelism |
|
if enable_sequence_parallelism: |
|
self.sp_rank = dist.get_rank(get_sequence_parallel_group()) |
|
else: |
|
self.sp_rank = None |
|
|
|
def forward(self, x, timestep, y, mask=None): |
|
""" |
|
Forward pass of STDiT. |
|
Args: |
|
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W] |
|
timestep (torch.Tensor): diffusion time steps; of shape [B] |
|
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C] |
|
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token] |
|
|
|
Returns: |
|
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W] |
|
""" |
|
|
|
x = x.to(self.dtype) |
|
timestep = timestep.to(self.dtype) |
|
y = y.to(self.dtype) |
|
|
|
|
|
x = self.x_embedder(x) |
|
x = rearrange(x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial) |
|
x = x + self.pos_embed |
|
x = rearrange(x, "B T S C -> B (T S) C") |
|
|
|
|
|
if self.enable_sequence_parallelism: |
|
x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down") |
|
|
|
t = self.t_embedder(timestep, dtype=x.dtype) |
|
t0 = self.t_block(t) |
|
y = self.y_embedder(y, self.training) |
|
|
|
if mask is not None: |
|
if mask.shape[0] != y.shape[0]: |
|
mask = mask.repeat(y.shape[0] // mask.shape[0], 1) |
|
mask = mask.squeeze(1).squeeze(1) |
|
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) |
|
y_lens = mask.sum(dim=1).tolist() |
|
else: |
|
y_lens = [y.shape[2]] * y.shape[0] |
|
y = y.squeeze(1).view(1, -1, x.shape[-1]) |
|
|
|
|
|
for i, block in enumerate(self.blocks): |
|
if i == 0: |
|
if self.enable_sequence_parallelism: |
|
tpe = torch.chunk( |
|
self.pos_embed_temporal, dist.get_world_size(get_sequence_parallel_group()), dim=1 |
|
)[self.sp_rank].contiguous() |
|
else: |
|
tpe = self.pos_embed_temporal |
|
else: |
|
tpe = None |
|
x = auto_grad_checkpoint(block, x, y, t0, y_lens, tpe) |
|
|
|
if self.enable_sequence_parallelism: |
|
x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up") |
|
|
|
|
|
|
|
x = self.final_layer(x, t) |
|
x = self.unpatchify(x) |
|
|
|
|
|
x = x.to(torch.float32) |
|
return x |
|
|
|
def unpatchify(self, x): |
|
""" |
|
Args: |
|
x (torch.Tensor): of shape [B, N, C] |
|
|
|
Return: |
|
x (torch.Tensor): of shape [B, C_out, T, H, W] |
|
""" |
|
|
|
N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)] |
|
T_p, H_p, W_p = self.patch_size |
|
x = rearrange( |
|
x, |
|
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)", |
|
N_t=N_t, |
|
N_h=N_h, |
|
N_w=N_w, |
|
T_p=T_p, |
|
H_p=H_p, |
|
W_p=W_p, |
|
C_out=self.out_channels, |
|
) |
|
return x |
|
|
|
def unpatchify_old(self, x): |
|
c = self.out_channels |
|
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] |
|
pt, ph, pw = self.patch_size |
|
|
|
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) |
|
x = rearrange(x, "n t h w r p q c -> n c t r h p w q") |
|
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) |
|
return imgs |
|
|
|
def get_spatial_pos_embed(self, grid_size=None): |
|
if grid_size is None: |
|
grid_size = self.input_size[1:] |
|
pos_embed = get_2d_sincos_pos_embed( |
|
self.hidden_size, |
|
(grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]), |
|
scale=self.space_scale, |
|
) |
|
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) |
|
return pos_embed |
|
|
|
def get_temporal_pos_embed(self): |
|
pos_embed = get_1d_sincos_pos_embed( |
|
self.hidden_size, |
|
self.input_size[0] // self.patch_size[0], |
|
scale=self.time_scale, |
|
) |
|
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) |
|
return pos_embed |
|
|
|
def freeze_not_temporal(self): |
|
for n, p in self.named_parameters(): |
|
if "attn_temp" not in n: |
|
p.requires_grad = False |
|
|
|
def freeze_text(self): |
|
for n, p in self.named_parameters(): |
|
if "cross_attn" in n: |
|
p.requires_grad = False |
|
|
|
def initialize_temporal(self): |
|
for block in self.blocks: |
|
nn.init.constant_(block.attn_temp.proj.weight, 0) |
|
nn.init.constant_(block.attn_temp.proj.bias, 0) |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
|
|
self.apply(_basic_init) |
|
|
|
|
|
w = self.x_embedder.proj.weight.data |
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
nn.init.normal_(self.t_block[1].weight, std=0.02) |
|
|
|
|
|
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) |
|
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.cross_attn.proj.weight, 0) |
|
nn.init.constant_(block.cross_attn.proj.bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
|
|
@MODELS.register_module("STDiT-XL/2") |
|
def STDiT_XL_2(from_pretrained=None, **kwargs): |
|
model = STDiT(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs) |
|
if from_pretrained is not None: |
|
load_checkpoint(model, from_pretrained) |
|
return model |
|
|