|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import html |
|
import os |
|
import re |
|
import urllib.parse as ul |
|
|
|
import ftfy |
|
import torch |
|
from bs4 import BeautifulSoup |
|
from huggingface_hub import hf_hub_download |
|
from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
from opensora.registry import MODELS |
|
|
|
|
|
class T5Embedder: |
|
available_models = ["t5-v1_1-xxl"] |
|
bad_punct_regex = re.compile( |
|
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" |
|
) |
|
|
|
def __init__( |
|
self, |
|
device, |
|
dir_or_name="t5-v1_1-xxl", |
|
*, |
|
local_cache=False, |
|
cache_dir=None, |
|
hf_token=None, |
|
use_text_preprocessing=True, |
|
t5_model_kwargs=None, |
|
torch_dtype=None, |
|
use_offload_folder=None, |
|
model_max_length=120, |
|
): |
|
self.device = torch.device(device) |
|
self.torch_dtype = torch_dtype or torch.bfloat16 |
|
if t5_model_kwargs is None: |
|
t5_model_kwargs = {"low_cpu_mem_usage": True, "torch_dtype": self.torch_dtype} |
|
if use_offload_folder is not None: |
|
t5_model_kwargs["offload_folder"] = use_offload_folder |
|
t5_model_kwargs["device_map"] = { |
|
"shared": self.device, |
|
"encoder.embed_tokens": self.device, |
|
"encoder.block.0": self.device, |
|
"encoder.block.1": self.device, |
|
"encoder.block.2": self.device, |
|
"encoder.block.3": self.device, |
|
"encoder.block.4": self.device, |
|
"encoder.block.5": self.device, |
|
"encoder.block.6": self.device, |
|
"encoder.block.7": self.device, |
|
"encoder.block.8": self.device, |
|
"encoder.block.9": self.device, |
|
"encoder.block.10": self.device, |
|
"encoder.block.11": self.device, |
|
"encoder.block.12": "disk", |
|
"encoder.block.13": "disk", |
|
"encoder.block.14": "disk", |
|
"encoder.block.15": "disk", |
|
"encoder.block.16": "disk", |
|
"encoder.block.17": "disk", |
|
"encoder.block.18": "disk", |
|
"encoder.block.19": "disk", |
|
"encoder.block.20": "disk", |
|
"encoder.block.21": "disk", |
|
"encoder.block.22": "disk", |
|
"encoder.block.23": "disk", |
|
"encoder.final_layer_norm": "disk", |
|
"encoder.dropout": "disk", |
|
} |
|
else: |
|
t5_model_kwargs["device_map"] = {"shared": self.device, "encoder": self.device} |
|
|
|
self.use_text_preprocessing = use_text_preprocessing |
|
self.hf_token = hf_token |
|
self.cache_dir = cache_dir or os.path.expanduser("~/.cache/IF_") |
|
self.dir_or_name = dir_or_name |
|
tokenizer_path, path = dir_or_name, dir_or_name |
|
if local_cache: |
|
cache_dir = os.path.join(self.cache_dir, dir_or_name) |
|
tokenizer_path, path = cache_dir, cache_dir |
|
elif dir_or_name in self.available_models: |
|
cache_dir = os.path.join(self.cache_dir, dir_or_name) |
|
for filename in [ |
|
"config.json", |
|
"special_tokens_map.json", |
|
"spiece.model", |
|
"tokenizer_config.json", |
|
"pytorch_model.bin.index.json", |
|
"pytorch_model-00001-of-00002.bin", |
|
"pytorch_model-00002-of-00002.bin", |
|
]: |
|
hf_hub_download( |
|
repo_id=f"DeepFloyd/{dir_or_name}", |
|
filename=filename, |
|
cache_dir=cache_dir, |
|
force_filename=filename, |
|
token=self.hf_token, |
|
) |
|
tokenizer_path, path = cache_dir, cache_dir |
|
else: |
|
cache_dir = os.path.join(self.cache_dir, "t5-v1_1-xxl") |
|
for filename in [ |
|
"config.json", |
|
"special_tokens_map.json", |
|
"spiece.model", |
|
"tokenizer_config.json", |
|
]: |
|
hf_hub_download( |
|
repo_id="DeepFloyd/t5-v1_1-xxl", |
|
filename=filename, |
|
cache_dir=cache_dir, |
|
force_filename=filename, |
|
token=self.hf_token, |
|
) |
|
tokenizer_path = cache_dir |
|
|
|
print(tokenizer_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) |
|
self.model = T5EncoderModel.from_pretrained(path, **t5_model_kwargs).eval() |
|
self.model_max_length = model_max_length |
|
|
|
def get_text_embeddings(self, texts): |
|
texts = [self.text_preprocessing(text) for text in texts] |
|
|
|
text_tokens_and_mask = self.tokenizer( |
|
texts, |
|
max_length=self.model_max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_attention_mask=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_tokens_and_mask["input_ids"] = text_tokens_and_mask["input_ids"] |
|
text_tokens_and_mask["attention_mask"] = text_tokens_and_mask["attention_mask"] |
|
|
|
with torch.no_grad(): |
|
text_encoder_embs = self.model( |
|
input_ids=text_tokens_and_mask["input_ids"].to(self.device), |
|
attention_mask=text_tokens_and_mask["attention_mask"].to(self.device), |
|
)["last_hidden_state"].detach() |
|
return text_encoder_embs, text_tokens_and_mask["attention_mask"].to(self.device) |
|
|
|
def text_preprocessing(self, text): |
|
if self.use_text_preprocessing: |
|
|
|
text = self.clean_caption(text) |
|
text = self.clean_caption(text) |
|
return text |
|
else: |
|
return text.lower().strip() |
|
|
|
@staticmethod |
|
def basic_clean(text): |
|
text = ftfy.fix_text(text) |
|
text = html.unescape(html.unescape(text)) |
|
return text.strip() |
|
|
|
def clean_caption(self, caption): |
|
caption = str(caption) |
|
caption = ul.unquote_plus(caption) |
|
caption = caption.strip().lower() |
|
caption = re.sub("<person>", "person", caption) |
|
|
|
caption = re.sub( |
|
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", |
|
"", |
|
caption, |
|
) |
|
caption = re.sub( |
|
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", |
|
"", |
|
caption, |
|
) |
|
|
|
caption = BeautifulSoup(caption, features="html.parser").text |
|
|
|
|
|
caption = re.sub(r"@[\w\d]+\b", "", caption) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) |
|
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) |
|
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) |
|
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) |
|
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) |
|
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) |
|
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) |
|
|
|
|
|
|
|
caption = re.sub( |
|
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", |
|
"-", |
|
caption, |
|
) |
|
|
|
|
|
caption = re.sub(r"[`´«»“”¨]", '"', caption) |
|
caption = re.sub(r"[‘’]", "'", caption) |
|
|
|
|
|
caption = re.sub(r""?", "", caption) |
|
|
|
caption = re.sub(r"&", "", caption) |
|
|
|
|
|
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) |
|
|
|
|
|
caption = re.sub(r"\d:\d\d\s+$", "", caption) |
|
|
|
|
|
caption = re.sub(r"\\n", " ", caption) |
|
|
|
|
|
caption = re.sub(r"#\d{1,3}\b", "", caption) |
|
|
|
caption = re.sub(r"#\d{5,}\b", "", caption) |
|
|
|
caption = re.sub(r"\b\d{6,}\b", "", caption) |
|
|
|
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) |
|
|
|
|
|
caption = re.sub(r"[\"\']{2,}", r'"', caption) |
|
caption = re.sub(r"[\.]{2,}", r" ", caption) |
|
|
|
caption = re.sub(self.bad_punct_regex, r" ", caption) |
|
caption = re.sub(r"\s+\.\s+", r" ", caption) |
|
|
|
|
|
regex2 = re.compile(r"(?:\-|\_)") |
|
if len(re.findall(regex2, caption)) > 3: |
|
caption = re.sub(regex2, " ", caption) |
|
|
|
caption = self.basic_clean(caption) |
|
|
|
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) |
|
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) |
|
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) |
|
|
|
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) |
|
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) |
|
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) |
|
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) |
|
caption = re.sub(r"\bpage\s+\d+\b", "", caption) |
|
|
|
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) |
|
|
|
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) |
|
|
|
caption = re.sub(r"\b\s+\:\s+", r": ", caption) |
|
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) |
|
caption = re.sub(r"\s+", " ", caption) |
|
|
|
caption.strip() |
|
|
|
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) |
|
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) |
|
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) |
|
caption = re.sub(r"^\.\S+$", "", caption) |
|
|
|
return caption.strip() |
|
|
|
|
|
@MODELS.register_module("t5") |
|
class T5Encoder: |
|
def __init__( |
|
self, |
|
from_pretrained=None, |
|
model_max_length=120, |
|
device="cuda", |
|
dtype=torch.float, |
|
local_cache=True, |
|
shardformer=False, |
|
): |
|
assert from_pretrained is not None, "Please specify the path to the T5 model" |
|
|
|
self.t5 = T5Embedder( |
|
device=device, |
|
torch_dtype=dtype, |
|
local_cache=local_cache, |
|
cache_dir=from_pretrained, |
|
model_max_length=model_max_length, |
|
) |
|
self.t5.model.to(dtype=dtype) |
|
self.y_embedder = None |
|
|
|
self.model_max_length = model_max_length |
|
self.output_dim = self.t5.model.config.d_model |
|
|
|
if shardformer: |
|
self.shardformer_t5() |
|
|
|
def shardformer_t5(self): |
|
from colossalai.shardformer import ShardConfig, ShardFormer |
|
|
|
from opensora.acceleration.shardformer.policy.t5_encoder import T5EncoderPolicy |
|
from opensora.utils.misc import requires_grad |
|
|
|
shard_config = ShardConfig( |
|
tensor_parallel_process_group=None, |
|
pipeline_stage_manager=None, |
|
enable_tensor_parallelism=False, |
|
enable_fused_normalization=False, |
|
enable_flash_attention=False, |
|
enable_jit_fused=True, |
|
enable_sequence_parallelism=False, |
|
enable_sequence_overlap=False, |
|
) |
|
shard_former = ShardFormer(shard_config=shard_config) |
|
optim_model, _ = shard_former.optimize(self.t5.model, policy=T5EncoderPolicy()) |
|
self.t5.model = optim_model.half() |
|
|
|
|
|
requires_grad(self.t5.model, False) |
|
|
|
def encode(self, text): |
|
caption_embs, emb_masks = self.t5.get_text_embeddings(text) |
|
caption_embs = caption_embs[:, None] |
|
return dict(y=caption_embs, mask=emb_masks) |
|
|
|
def null(self, n): |
|
null_y = self.y_embedder.y_embedding[None].repeat(n, 1, 1)[:, None] |
|
return null_y |
|
|