|
import argparse |
|
import csv |
|
import os |
|
import warnings |
|
|
|
import torch |
|
from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX |
|
from llava.conversation import conv_templates |
|
from llava.mm_utils import get_anyres_image_grid_shape, get_model_name_from_path, process_images, tokenizer_image_token |
|
from llava.model.builder import load_pretrained_model |
|
from llava.model.llava_arch import unpad_image |
|
from llava.utils import disable_torch_init |
|
from tqdm import tqdm |
|
|
|
from .utils import extract_frames, prompts, read_video_list |
|
|
|
disable_torch_init() |
|
|
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes=None |
|
): |
|
|
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
if type(images) is list: |
|
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat") |
|
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square") |
|
if mm_patch_merge_type == "flat": |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
elif mm_patch_merge_type.startswith("spatial"): |
|
new_image_features = [] |
|
for image_idx, image_feature in enumerate(image_features): |
|
if image_feature.shape[0] > 1: |
|
base_image_feature = image_feature[0] |
|
image_feature = image_feature[1:] |
|
height = width = self.get_vision_tower().num_patches_per_side |
|
assert height * width == base_image_feature.shape[0] |
|
if image_aspect_ratio == "anyres": |
|
num_patch_width, num_patch_height = get_anyres_image_grid_shape( |
|
image_sizes[image_idx], |
|
self.config.image_grid_pinpoints, |
|
self.get_vision_tower().config.image_size, |
|
) |
|
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) |
|
else: |
|
raise NotImplementedError |
|
if "unpad" in mm_patch_merge_type: |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
image_feature = torch.cat( |
|
( |
|
image_feature, |
|
self.model.image_newline[:, None, None] |
|
.expand(*image_feature.shape[:-1], 1) |
|
.to(image_feature.device), |
|
), |
|
dim=-1, |
|
) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
else: |
|
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() |
|
image_feature = image_feature.flatten(0, 3) |
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0) |
|
else: |
|
image_feature = image_feature[0] |
|
if "unpad" in mm_patch_merge_type: |
|
image_feature = torch.cat( |
|
(image_feature, self.model.image_newline[None].to(image_feature.device)), dim=0 |
|
) |
|
new_image_features.append(image_feature) |
|
image_features = new_image_features |
|
else: |
|
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
|
|
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
input_ids = [ |
|
cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask) |
|
] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = ( |
|
[-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
) |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append( |
|
torch.full( |
|
(cur_image_features.shape[0],), |
|
IGNORE_INDEX, |
|
device=cur_labels.device, |
|
dtype=cur_labels.dtype, |
|
) |
|
) |
|
|
|
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full( |
|
(batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device |
|
) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, "tokenizer_padding_side", "right") == "left": |
|
new_input_embeds_padded.append( |
|
torch.cat( |
|
( |
|
torch.zeros( |
|
(max_len - cur_len, cur_new_embed.shape[1]), |
|
dtype=cur_new_embed.dtype, |
|
device=cur_new_embed.device, |
|
), |
|
cur_new_embed, |
|
), |
|
dim=0, |
|
) |
|
) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange( |
|
0, cur_len, dtype=position_ids.dtype, device=position_ids.device |
|
) |
|
else: |
|
new_input_embeds_padded.append( |
|
torch.cat( |
|
( |
|
cur_new_embed, |
|
torch.zeros( |
|
(max_len - cur_len, cur_new_embed.shape[1]), |
|
dtype=cur_new_embed.dtype, |
|
device=cur_new_embed.device, |
|
), |
|
), |
|
dim=0, |
|
) |
|
) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange( |
|
0, cur_len, dtype=position_ids.dtype, device=position_ids.device |
|
) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
@torch.inference_mode() |
|
def main(args): |
|
|
|
|
|
|
|
videos = read_video_list(args.video_folder, args.output_file) |
|
f = open(args.output_file, "a") |
|
writer = csv.writer(f) |
|
|
|
|
|
|
|
|
|
model_path = "liuhaotian/llava-v1.6-34b" |
|
query = prompts[args.prompt] |
|
print(f"Prompt: {query}") |
|
conv = conv_templates["chatml_direct"].copy() |
|
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + query) |
|
prompt = conv.get_prompt() |
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
tokenizer, model, image_processor, context_len = load_pretrained_model( |
|
model_path=model_path, |
|
model_base=None, |
|
model_name=get_model_name_from_path(model_path), |
|
) |
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") |
|
input_ids = input_ids.unsqueeze(0).to(model.device) |
|
|
|
|
|
|
|
|
|
bs = args.bs |
|
for i in tqdm(range(0, len(videos), bs)): |
|
|
|
video_files = videos[i : i + bs] |
|
frames = [] |
|
video_lengths = [] |
|
for video_file in video_files: |
|
frame, length = extract_frames(os.path.join(args.video_folder, video_file)) |
|
if len(frame) < 3: |
|
continue |
|
frames.append(frame) |
|
video_lengths.append(length) |
|
if len(frames) == 0: |
|
continue |
|
|
|
|
|
samples = [] |
|
for imgs in frames: |
|
imgs_size = [img.size for img in imgs] |
|
imgs = process_images(imgs, image_processor, model.config) |
|
imgs = imgs.to(model.device, dtype=torch.float16) |
|
with torch.inference_mode(): |
|
_, _, _, _, inputs_embeds, _ = prepare_inputs_labels_for_multimodal( |
|
model, input_ids, None, None, None, None, images=imgs, image_sizes=imgs_size |
|
) |
|
samples.append(inputs_embeds) |
|
|
|
|
|
max_len = max([sample.shape[1] for sample in samples]) |
|
attention_mask = torch.tensor( |
|
[[0] * (max_len - samples[i].shape[1]) + [1] * samples[i].shape[1] for i in range(len(samples))] |
|
).to(model.device) |
|
inputs_embeds = [ |
|
torch.cat( |
|
[ |
|
torch.zeros( |
|
(1, max_len - samples[i].shape[1], samples[i].shape[-1]), |
|
device=model.device, |
|
dtype=torch.float16, |
|
), |
|
samples[i], |
|
], |
|
dim=1, |
|
) |
|
for i in range(len(samples)) |
|
] |
|
inputs_embeds = torch.cat(inputs_embeds, dim=0) |
|
|
|
|
|
output_ids = super(type(model), model).generate( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
do_sample=True, |
|
temperature=0.2, |
|
max_new_tokens=512, |
|
use_cache=True, |
|
) |
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
outputs = [output.replace("\n", " ").strip() for output in outputs] |
|
|
|
|
|
result = list(zip(video_files, outputs, video_lengths)) |
|
for t in result: |
|
writer.writerow(t) |
|
|
|
f.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("video_folder", type=str) |
|
parser.add_argument("output_file", type=str) |
|
parser.add_argument("--bs", type=int, default=32) |
|
parser.add_argument("--prompt", type=str, default="three_frames") |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|