File size: 8,379 Bytes
9c317f9 bcc5c70 ede06bd bcc5c70 9c317f9 bcc5c70 7eeefc1 459aa64 9c317f9 bcc5c70 7eeefc1 459aa64 7eeefc1 459aa64 7eeefc1 9c317f9 bcc5c70 9c317f9 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 bcc5c70 459aa64 9c317f9 bcc5c70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name_2_7B_instruct = "Zyphra/Zamba2-2.7B-instruct"
model_name_7B_instruct = "Zyphra/Zamba2-7B-instruct"
tokenizer_2_7B_instruct = AutoTokenizer.from_pretrained(model_name_2_7B_instruct)
model_2_7B_instruct = AutoModelForCausalLM.from_pretrained(
model_name_2_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)
tokenizer_7B_instruct = AutoTokenizer.from_pretrained(model_name_7B_instruct)
model_7B_instruct = AutoModelForCausalLM.from_pretrained(
model_name_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)
def extract_assistant_response(generated_text):
assistant_token = '<|im_start|> assistant'
end_token = '<|im_end|>'
start_idx = generated_text.rfind(assistant_token)
if start_idx == -1:
# Assistant token not found
return generated_text.strip()
start_idx += len(assistant_token)
end_idx = generated_text.find(end_token, start_idx)
if end_idx == -1:
# End token not found, return from start_idx to end
return generated_text[start_idx:].strip()
else:
return generated_text[start_idx:end_idx].strip()
def generate_response_2_7B_instruct(chat_history, max_new_tokens):
sample = []
for turn in chat_history:
if turn[0]:
sample.append({'role': 'user', 'content': turn[0]})
if turn[1]:
sample.append({'role': 'assistant', 'content': turn[1]})
chat_sample = tokenizer_2_7B_instruct.apply_chat_template(sample, tokenize=False)
input_ids = tokenizer_2_7B_instruct(chat_sample, return_tensors='pt', add_special_tokens=False).to(model_2_7B_instruct.device)
outputs = model_2_7B_instruct.generate(**input_ids, max_new_tokens=int(max_new_tokens), return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
"""
outputs = model_2_7B_instruct.generate(
input_ids=input_ids,
max_new_tokens=int(max_new_tokens),
do_sample=True,
use_cache=True,
temperature=temperature,
top_k=int(top_k),
top_p=top_p,
repetition_penalty=repetition_penalty,
num_beams=int(num_beams),
length_penalty=length_penalty,
num_return_sequences=1
)
"""
generated_text = tokenizer_2_7B_instruct.decode(outputs[0])
assistant_response = extract_assistant_response(generated_text)
return assistant_response
def generate_response_7B_instruct(chat_history, max_new_tokens):
sample = []
for turn in chat_history:
if turn[0]:
sample.append({'role': 'user', 'content': turn[0]})
if turn[1]:
sample.append({'role': 'assistant', 'content': turn[1]})
chat_sample = tokenizer_7B_instruct.apply_chat_template(sample, tokenize=False)
input_ids = tokenizer_7B_instruct(chat_sample, return_tensors='pt', add_special_tokens=False).to(model_7B_instruct.device)
outputs = model_7B_instruct.generate(**input_ids, max_new_tokens=int(max_new_tokens), return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
"""
outputs = model_7B_instruct.generate(
input_ids=input_ids,
max_new_tokens=int(max_new_tokens),
do_sample=True,
use_cache=True,
temperature=temperature,
top_k=int(top_k),
top_p=top_p,
repetition_penalty=repetition_penalty,
num_beams=int(num_beams),
length_penalty=length_penalty,
num_return_sequences=1
)
"""
generated_text = tokenizer_7B_instruct.decode(outputs[0])
assistant_response = extract_assistant_response(generated_text)
return assistant_response
with gr.Blocks() as demo:
gr.Markdown("# Zamba2 Model Selector")
with gr.Tabs():
with gr.TabItem("2.7B Instruct Model"):
gr.Markdown("### Zamba2-2.7B Instruct Model")
with gr.Column():
chat_history_2_7B_instruct = gr.State([])
chatbot_2_7B_instruct = gr.Chatbot()
message_2_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
with gr.Accordion("Generation Parameters", open=False):
max_new_tokens_2_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
# temperature_2_7B_instruct = gr.Slider(0.1, 1.5, step=0.1, value=0.2, label="Temperature")
# top_k_2_7B_instruct = gr.Slider(1, 100, step=1, value=50, label="Top K")
# top_p_2_7B_instruct = gr.Slider(0.1, 1.0, step=0.1, value=1.0, label="Top P")
# repetition_penalty_2_7B_instruct = gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty")
# num_beams_2_7B_instruct = gr.Slider(1, 10, step=1, value=1, label="Number of Beams")
# length_penalty_2_7B_instruct = gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty")
def user_message_2_7B_instruct(message, chat_history):
chat_history = chat_history + [[message, None]]
return gr.update(value=""), chat_history, chat_history
def bot_response_2_7B_instruct(chat_history, max_new_tokens):
response = generate_response_2_7B_instruct(chat_history, max_new_tokens)
chat_history[-1][1] = response
return chat_history, chat_history
send_button_2_7B_instruct = gr.Button("Send")
send_button_2_7B_instruct.click(
fn=user_message_2_7B_instruct,
inputs=[message_2_7B_instruct, chat_history_2_7B_instruct],
outputs=[message_2_7B_instruct, chat_history_2_7B_instruct, chatbot_2_7B_instruct]
).then(
fn=bot_response_2_7B_instruct,
inputs=[
chat_history_2_7B_instruct,
max_new_tokens_2_7B_instruct
],
outputs=[chat_history_2_7B_instruct, chatbot_2_7B_instruct]
)
with gr.TabItem("7B Instruct Model"):
gr.Markdown("### Zamba2-7B Instruct Model")
with gr.Column():
chat_history_7B_instruct = gr.State([])
chatbot_7B_instruct = gr.Chatbot()
message_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
with gr.Accordion("Generation Parameters", open=False):
max_new_tokens_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
# temperature_7B_instruct = gr.Slider(0.1, 1.5, step=0.1, value=0.2, label="Temperature")
# top_k_7B_instruct = gr.Slider(1, 100, step=1, value=50, label="Top K")
# top_p_7B_instruct = gr.Slider(0.1, 1.0, step=0.1, value=1.0, label="Top P")
# repetition_penalty_7B_instruct = gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty")
# num_beams_7B_instruct = gr.Slider(1, 10, step=1, value=1, label="Number of Beams")
# length_penalty_7B_instruct = gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty")
def user_message_7B_instruct(message, chat_history):
chat_history = chat_history + [[message, None]]
return gr.update(value=""), chat_history, chat_history
def bot_response_7B_instruct(chat_history, max_new_tokens):
response = generate_response_7B_instruct(chat_history, max_new_tokens)
chat_history[-1][1] = response
return chat_history, chat_history
send_button_7B_instruct = gr.Button("Send")
send_button_7B_instruct.click(
fn=user_message_7B_instruct,
inputs=[message_7B_instruct, chat_history_7B_instruct],
outputs=[message_7B_instruct, chat_history_7B_instruct, chatbot_7B_instruct]
).then(
fn=bot_response_7B_instruct,
inputs=[
chat_history_7B_instruct,
max_new_tokens_7B_instruct
],
outputs=[chat_history_7B_instruct, chatbot_7B_instruct]
)
if __name__ == "__main__":
demo.queue().launch()
|