import os import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch from huggingface_hub import login # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B") model = AutoModelForCausalLM.from_pretrained( "Zyphra/Zamba2-7B", device_map="cuda", # Automatically handles device placement torch_dtype=torch.bfloat16 ) # Define the function to generate responses def generate_response(input_text, max_new_tokens, temperature, top_k, top_p, repetition_penalty, num_beams, length_penalty): # Tokenize and move input to model's device input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device) # Generate response using specified parameters outputs = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, num_beams=num_beams, length_penalty=length_penalty, num_return_sequences=1 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create Gradio interface with adjustable parameters demo = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(lines=1, placeholder="Enter a text to prepend...", label="Input Text"), gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens"), gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature"), gr.Slider(1, 100, step=1, value=50, label="Top K"), gr.Slider(0.1, 1.0, step=0.1, value=0.9, label="Top P"), gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty"), gr.Slider(1, 10, step=1, value=5, label="Number of Beams"), gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty") ], outputs=gr.Textbox(label="Generated Response"), title="Zamba2-7B Model", description="Ask Zamba2 7B a question with customizable parameters." ) if __name__ == "__main__": demo.launch()