import os import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Define models as None to delay loading model, model_instruct = None, None tokenizer, tokenizer_instruct = None, None def generate_response_base(input_text, max_new_tokens, temperature, top_k, top_p, repetition_penalty, num_beams, length_penalty): global model, tokenizer if model is None: tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B") model = AutoModelForCausalLM.from_pretrained( "Zyphra/Zamba2-7B", device_map="cuda", torch_dtype=torch.bfloat16 ) selected_model = model selected_tokenizer = tokenizer # Tokenize and generate response input_ids = selected_tokenizer(input_text, return_tensors="pt").input_ids.to(selected_model.device) outputs = selected_model.generate( input_ids=input_ids, max_new_tokens=int(max_new_tokens), do_sample=True, temperature=temperature, top_k=int(top_k), top_p=top_p, repetition_penalty=repetition_penalty, num_beams=int(num_beams), length_penalty=length_penalty, num_return_sequences=1 ) response = selected_tokenizer.decode(outputs[0], skip_special_tokens=True) return response def generate_response_instruct(chat_history, max_new_tokens, temperature, top_k, top_p, repetition_penalty, num_beams, length_penalty): global model_instruct, tokenizer_instruct if model_instruct is None: tokenizer_instruct = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B-instruct") model_instruct = AutoModelForCausalLM.from_pretrained( "Zyphra/Zamba2-7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16 ) selected_model = model_instruct selected_tokenizer = tokenizer_instruct # Build the sample sample = [] for turn in chat_history: if turn[0]: sample.append({'role': 'user', 'content': turn[0]}) if turn[1]: sample.append({'role': 'assistant', 'content': turn[1]}) # Format the chat sample chat_sample = selected_tokenizer.apply_chat_template(sample, tokenize=False) # Tokenize input and generate output input_ids = selected_tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).input_ids.to(selected_model.device) outputs = selected_model.generate( input_ids=input_ids, max_new_tokens=int(max_new_tokens), do_sample=True, temperature=temperature, top_k=int(top_k), top_p=top_p, repetition_penalty=repetition_penalty, num_beams=int(num_beams), length_penalty=length_penalty, num_return_sequences=1 ) response = selected_tokenizer.decode(outputs[0], skip_special_tokens=True) return response def clear_text(): return "" with gr.Blocks() as demo: gr.Markdown("# Zamba2-7B Model Selector") with gr.Tabs(): with gr.TabItem("Base Model"): gr.Markdown("### Zamba2-7B Base Model") input_text = gr.Textbox(lines=2, placeholder="Enter your input text...", label="Input Text") output_text = gr.Textbox(label="Generated Response") max_new_tokens = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens") temperature = gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature") top_k = gr.Slider(1, 100, step=1, value=50, label="Top K") top_p = gr.Slider(0.1, 1.0, step=0.1, value=0.9, label="Top P") repetition_penalty = gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty") num_beams = gr.Slider(1, 10, step=1, value=5, label="Number of Beams") length_penalty = gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty") submit_button = gr.Button("Generate Response") submit_button.click(fn=generate_response_base, inputs=[input_text, max_new_tokens, temperature, top_k, top_p, repetition_penalty, num_beams, length_penalty], outputs=output_text) submit_button.click(fn=clear_text, outputs=input_text) with gr.TabItem("Instruct Model"): gr.Markdown("### Zamba2-7B Instruct Model") chat_history = gr.Chatbot() message = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message") max_new_tokens_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens") temperature_instruct = gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature") top_k_instruct = gr.Slider(1, 100, step=1, value=50, label="Top K") top_p_instruct = gr.Slider(0.1, 1.0, step=0.1, value=0.9, label="Top P") repetition_penalty_instruct = gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty") num_beams_instruct = gr.Slider(1, 10, step=1, value=5, label="Number of Beams") length_penalty_instruct = gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty") def user_message(message, chat_history): chat_history = chat_history + [[message, None]] return "", chat_history def bot_response(chat_history): response = generate_response_instruct(chat_history, max_new_tokens_instruct, temperature_instruct, top_k_instruct, top_p_instruct, repetition_penalty_instruct, num_beams_instruct, length_penalty_instruct) chat_history[-1][1] = response return chat_history message.submit(user_message, [message, chat_history], [message, chat_history], queue=False).then( bot_response, inputs=[chat_history], outputs=[chat_history] ) if __name__ == "__main__": demo.launch()