import torch import gradio as gr from PIL import image import spaces from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline device = "cuda" num_images_per_prompt = 1 prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device) decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device) prompt = "Anthropomorphic cat dressed as a pilot" negative_prompt = "" @spaces.GPU def gen(prompt, negative, width, height): prior_output = prior( prompt=prompt, height=height, width=width, negative_prompt=negative, guidance_scale=4.0, num_images_per_prompt=num_images_per_prompt, num_inference_steps=20 ) decoder_output = decoder( image_embeddings=prior_output.image_embeddings.half(), prompt=prompt, negative_prompt=negative, guidance_scale=0.0, output_type="pil", num_inference_steps=10 ).images return decoder_output