|
import torch
|
|
import torchaudio.functional as F
|
|
from torch import Tensor, nn
|
|
from torchaudio.transforms import MelScale
|
|
|
|
|
|
class LinearSpectrogram(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_fft=2048,
|
|
win_length=2048,
|
|
hop_length=512,
|
|
center=False,
|
|
mode="pow2_sqrt",
|
|
):
|
|
super().__init__()
|
|
|
|
self.n_fft = n_fft
|
|
self.win_length = win_length
|
|
self.hop_length = hop_length
|
|
self.center = center
|
|
self.mode = mode
|
|
|
|
self.register_buffer("window", torch.hann_window(win_length), persistent=False)
|
|
|
|
def forward(self, y: Tensor) -> Tensor:
|
|
if y.ndim == 3:
|
|
y = y.squeeze(1)
|
|
|
|
y = torch.nn.functional.pad(
|
|
y.unsqueeze(1),
|
|
(
|
|
(self.win_length - self.hop_length) // 2,
|
|
(self.win_length - self.hop_length + 1) // 2,
|
|
),
|
|
mode="reflect",
|
|
).squeeze(1)
|
|
|
|
spec = torch.stft(
|
|
y,
|
|
self.n_fft,
|
|
hop_length=self.hop_length,
|
|
win_length=self.win_length,
|
|
window=self.window,
|
|
center=self.center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=True,
|
|
)
|
|
|
|
spec = torch.view_as_real(spec)
|
|
|
|
if self.mode == "pow2_sqrt":
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
|
|
|
return spec
|
|
|
|
|
|
class LogMelSpectrogram(nn.Module):
|
|
def __init__(
|
|
self,
|
|
sample_rate=44100,
|
|
n_fft=2048,
|
|
win_length=2048,
|
|
hop_length=512,
|
|
n_mels=128,
|
|
center=False,
|
|
f_min=0.0,
|
|
f_max=None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.sample_rate = sample_rate
|
|
self.n_fft = n_fft
|
|
self.win_length = win_length
|
|
self.hop_length = hop_length
|
|
self.center = center
|
|
self.n_mels = n_mels
|
|
self.f_min = f_min
|
|
self.f_max = f_max or float(sample_rate // 2)
|
|
|
|
self.spectrogram = LinearSpectrogram(n_fft, win_length, hop_length, center)
|
|
|
|
fb = F.melscale_fbanks(
|
|
n_freqs=self.n_fft // 2 + 1,
|
|
f_min=self.f_min,
|
|
f_max=self.f_max,
|
|
n_mels=self.n_mels,
|
|
sample_rate=self.sample_rate,
|
|
norm="slaney",
|
|
mel_scale="slaney",
|
|
)
|
|
self.register_buffer(
|
|
"fb",
|
|
fb,
|
|
persistent=False,
|
|
)
|
|
|
|
def compress(self, x: Tensor) -> Tensor:
|
|
return torch.log(torch.clamp(x, min=1e-5))
|
|
|
|
def decompress(self, x: Tensor) -> Tensor:
|
|
return torch.exp(x)
|
|
|
|
def apply_mel_scale(self, x: Tensor) -> Tensor:
|
|
return torch.matmul(x.transpose(-1, -2), self.fb).transpose(-1, -2)
|
|
|
|
def forward(
|
|
self, x: Tensor, return_linear: bool = False, sample_rate: int = None
|
|
) -> Tensor:
|
|
if sample_rate is not None and sample_rate != self.sample_rate:
|
|
x = F.resample(x, orig_freq=sample_rate, new_freq=self.sample_rate)
|
|
|
|
linear = self.spectrogram(x)
|
|
x = self.apply_mel_scale(linear)
|
|
x = self.compress(x)
|
|
|
|
if return_linear:
|
|
return x, self.compress(linear)
|
|
|
|
return x
|
|
|