|
import os
|
|
import queue
|
|
import threading
|
|
import time
|
|
from contextlib import nullcontext
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Literal, Optional, Tuple, Union
|
|
import spaces
|
|
import click
|
|
import hydra
|
|
import numpy as np
|
|
import torch
|
|
import torch._dynamo.config
|
|
import torch._inductor.config
|
|
from loguru import logger
|
|
from tqdm import tqdm
|
|
import spaces
|
|
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID
|
|
from fish_speech.text import clean_text, split_text
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
torch._inductor.config.coordinate_descent_tuning = True
|
|
torch._inductor.config.triton.unique_kernel_names = True
|
|
|
|
zero = torch.Tensor([0]).cuda()
|
|
|
|
if hasattr(torch._inductor.config, "fx_graph_cache"):
|
|
|
|
torch._inductor.config.fx_graph_cache = True
|
|
|
|
|
|
from fish_speech.models.text2semantic.llama import (
|
|
BaseTransformer,
|
|
DualARTransformer,
|
|
NaiveTransformer,
|
|
)
|
|
|
|
|
|
def multinomial_sample_one_no_sync(
|
|
probs_sort,
|
|
):
|
|
q = torch.empty_like(probs_sort).exponential_(1)
|
|
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
|
|
|
|
|
def logits_to_probs(
|
|
logits,
|
|
previous_tokens: Optional[torch.Tensor] = None,
|
|
temperature: torch.Tensor = 1.0,
|
|
top_p: torch.Tensor = 1.0,
|
|
repetition_penalty: torch.Tensor = 1.0,
|
|
) -> torch.Tensor:
|
|
|
|
if previous_tokens is not None:
|
|
previous_tokens = previous_tokens.long()
|
|
score = torch.gather(logits, dim=0, index=previous_tokens)
|
|
score = torch.where(
|
|
score < 0, score * repetition_penalty, score / repetition_penalty
|
|
)
|
|
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
|
|
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
|
sorted_indices_to_remove = cum_probs > top_p
|
|
sorted_indices_to_remove[0] = False
|
|
indices_to_remove = sorted_indices_to_remove.scatter(
|
|
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
|
)
|
|
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
|
|
|
logits = logits / max(temperature, 1e-5)
|
|
|
|
probs = torch.nn.functional.softmax(logits, dim=-1)
|
|
return probs
|
|
|
|
def sample(
|
|
logits,
|
|
previous_tokens: Optional[torch.Tensor] = None,
|
|
**sampling_kwargs,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
probs = logits_to_probs(
|
|
logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs
|
|
)
|
|
idx_next = multinomial_sample_one_no_sync(probs)
|
|
return idx_next, probs
|
|
|
|
def decode_one_token_ar(
|
|
model: DualARTransformer,
|
|
x: torch.Tensor,
|
|
input_pos: torch.Tensor,
|
|
previous_tokens: torch.Tensor = None,
|
|
**sampling_kwargs,
|
|
) -> torch.Tensor:
|
|
|
|
x = model.forward_generate(x, input_pos)
|
|
|
|
sampling_kwargs_main = sampling_kwargs.copy()
|
|
sampling_kwargs_main["temperature"] = 0.1
|
|
sampling_kwargs_main["top_p"] = 0.1
|
|
sampling_kwargs_main["repetition_penalty"] = 1.0
|
|
|
|
codebooks = [
|
|
sample(
|
|
x.logits,
|
|
previous_tokens=None,
|
|
**sampling_kwargs_main,
|
|
)[0]
|
|
]
|
|
|
|
x = x.hidden_states
|
|
|
|
|
|
for layer in model.fast_layers:
|
|
layer.attention.kv_cache.k_cache.fill_(0)
|
|
layer.attention.kv_cache.v_cache.fill_(0)
|
|
|
|
for codebook_idx in range(model.config.num_codebooks):
|
|
input_pos = torch.tensor([codebook_idx], device=x.device, dtype=torch.long)
|
|
logits = model.forward_generate_fast(x, input_pos)
|
|
a = sample(
|
|
logits,
|
|
previous_tokens=(
|
|
previous_tokens[codebook_idx + 1]
|
|
if previous_tokens is not None
|
|
else None
|
|
),
|
|
**sampling_kwargs,
|
|
)[0]
|
|
x = model.fast_embeddings(a)
|
|
codebooks.append(a)
|
|
|
|
return torch.stack(codebooks, dim=0)
|
|
|
|
@torch.no_grad()
|
|
def decode_one_token_naive(
|
|
model: NaiveTransformer,
|
|
x: torch.Tensor,
|
|
input_pos: torch.Tensor,
|
|
previous_tokens: torch.Tensor = None,
|
|
**sampling_kwargs,
|
|
) -> torch.Tensor:
|
|
|
|
|
|
|
|
x = model.forward_generate(x, input_pos)
|
|
|
|
sampling_kwargs_main = sampling_kwargs.copy()
|
|
sampling_kwargs_main["temperature"] = 0.1
|
|
sampling_kwargs_main["top_p"] = 0.1
|
|
sampling_kwargs_main["repetition_penalty"] = 1.0
|
|
|
|
codebooks = [
|
|
sample(
|
|
x.logits,
|
|
previous_tokens=None,
|
|
**sampling_kwargs_main,
|
|
)[0]
|
|
]
|
|
|
|
for i in range(model.config.num_codebooks):
|
|
codebooks.append(
|
|
sample(
|
|
x.codebook_logits[:, :, i],
|
|
previous_tokens=(
|
|
previous_tokens[i + 1] if previous_tokens is not None else None
|
|
),
|
|
**sampling_kwargs,
|
|
)[0]
|
|
)
|
|
|
|
return torch.stack(codebooks, dim=0)
|
|
|
|
@torch.no_grad()
|
|
|
|
def decode_n_tokens(
|
|
model: NaiveTransformer,
|
|
cur_token: torch.Tensor,
|
|
input_pos: torch.Tensor,
|
|
num_new_tokens: int,
|
|
im_end_id: int = 4,
|
|
decode_one_token=decode_one_token_naive,
|
|
**sampling_kwargs,
|
|
):
|
|
previous_tokens = torch.zeros(
|
|
(model.config.num_codebooks + 1, model.config.max_seq_len),
|
|
dtype=torch.int,
|
|
device=cur_token.device,
|
|
)
|
|
|
|
for i in tqdm(range(num_new_tokens)):
|
|
|
|
win_size = 16
|
|
if i < win_size:
|
|
window = previous_tokens[:, :win_size]
|
|
else:
|
|
window = previous_tokens[:, i - win_size : i]
|
|
|
|
with (
|
|
torch.backends.cuda.sdp_kernel(
|
|
enable_flash=False, enable_mem_efficient=False, enable_math=True
|
|
)
|
|
if torch.cuda.is_available()
|
|
else nullcontext()
|
|
):
|
|
next_token = decode_one_token(
|
|
model=model,
|
|
x=cur_token,
|
|
input_pos=input_pos,
|
|
previous_tokens=window,
|
|
**sampling_kwargs,
|
|
)
|
|
|
|
input_pos += 1
|
|
cur_token = next_token.view(1, model.config.num_codebooks + 1, -1)
|
|
previous_tokens[:, i : i + 1] = next_token.view(
|
|
model.config.num_codebooks + 1, -1
|
|
)
|
|
|
|
if cur_token[0, 0, -1] == im_end_id:
|
|
break
|
|
|
|
return previous_tokens[:, : i + 1]
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def generate(
|
|
*,
|
|
model: NaiveTransformer,
|
|
prompt: torch.Tensor,
|
|
max_new_tokens: int,
|
|
im_end_id: int = 4,
|
|
decode_one_token=decode_one_token_naive,
|
|
**sampling_kwargs,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
|
|
"""
|
|
|
|
|
|
|
|
T = prompt.size(1)
|
|
|
|
if max_new_tokens:
|
|
if T + max_new_tokens > model.config.max_seq_len:
|
|
max_new_tokens = model.config.max_seq_len - T
|
|
logger.info(f"Truncating max_new_tokens to {max_new_tokens}")
|
|
|
|
T_new = T + max_new_tokens
|
|
else:
|
|
T_new = model.config.max_seq_len
|
|
max_new_tokens = T_new - T
|
|
|
|
device, dtype = prompt.device, prompt.dtype
|
|
with torch.device(device):
|
|
model.setup_caches(
|
|
max_batch_size=1,
|
|
max_seq_len=model.config.max_seq_len,
|
|
dtype=next(model.parameters()).dtype,
|
|
)
|
|
|
|
codebook_dim = 1 + model.config.num_codebooks
|
|
|
|
empty = torch.empty((codebook_dim, T_new), dtype=dtype, device=device)
|
|
empty[:, :T] = prompt
|
|
seq = empty
|
|
input_pos = torch.arange(0, T, device=device)
|
|
|
|
|
|
prefill_decode = (
|
|
decode_one_token_naive
|
|
if isinstance(model, NaiveTransformer)
|
|
else decode_one_token_ar
|
|
)
|
|
|
|
next_token = prefill_decode(
|
|
model, prompt.view(1, codebook_dim, -1), input_pos, **sampling_kwargs
|
|
)
|
|
seq[:, T : T + 1] = next_token
|
|
|
|
input_pos = torch.tensor([T], device=device, dtype=torch.int)
|
|
x = decode_n_tokens(
|
|
model,
|
|
next_token.view(1, codebook_dim, -1),
|
|
input_pos,
|
|
max_new_tokens - 1,
|
|
im_end_id=im_end_id,
|
|
decode_one_token=decode_one_token,
|
|
**sampling_kwargs,
|
|
)
|
|
|
|
seq = seq[:, : T + 1 + x.size(1)]
|
|
seq[:, T + 1 :] = x
|
|
|
|
return seq
|
|
|
|
@torch.no_grad()
|
|
def encode_tokens(
|
|
tokenizer,
|
|
string,
|
|
device="cuda",
|
|
prompt_tokens=None,
|
|
num_codebooks=4,
|
|
):
|
|
|
|
string = clean_text(string)
|
|
string = f"<|im_start|>user\n{string}<|im_end|><|im_start|>assistant\n"
|
|
|
|
new_tokens = tokenizer.encode(
|
|
string,
|
|
add_special_tokens=False,
|
|
max_length=10**6,
|
|
truncation=False,
|
|
)
|
|
tokens = torch.tensor([new_tokens], dtype=torch.int, device=device)
|
|
|
|
|
|
zeros = (
|
|
torch.ones((num_codebooks, tokens.size(1)), dtype=torch.int, device=device)
|
|
* CODEBOOK_PAD_TOKEN_ID
|
|
)
|
|
prompt = torch.cat((tokens, zeros), dim=0)
|
|
|
|
if prompt_tokens is None:
|
|
return prompt
|
|
|
|
|
|
if prompt_tokens.ndim == 3:
|
|
assert (
|
|
prompt_tokens.shape[0] == 1
|
|
), f"3 dim prompt tokens should have shape (1, num_codebooks, seq_len)"
|
|
prompt_tokens = prompt_tokens[0]
|
|
|
|
assert prompt_tokens.ndim == 2
|
|
data = prompt_tokens + 1
|
|
|
|
if prompt_tokens.shape[0] > num_codebooks:
|
|
logger.warning(
|
|
f"Prompt tokens shape {prompt_tokens.shape} is larger than num_codebooks {num_codebooks}, getting first {num_codebooks} codebooks"
|
|
)
|
|
data = data[:num_codebooks]
|
|
|
|
|
|
data = torch.cat(
|
|
(data, torch.zeros((data.size(0), 1), dtype=torch.int, device=device)),
|
|
dim=1,
|
|
)
|
|
|
|
|
|
s0_token_id = tokenizer.convert_tokens_to_ids("<|semantic|>")
|
|
end_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
|
main_token_ids = (
|
|
torch.ones((1, data.size(1)), dtype=torch.int, device=device) * s0_token_id
|
|
)
|
|
main_token_ids[0, -1] = end_token_id
|
|
|
|
data = torch.cat((main_token_ids, data), dim=0)
|
|
prompt = torch.cat((prompt, data), dim=1)
|
|
|
|
return prompt
|
|
|
|
|
|
def load_model(checkpoint_path, device, precision, compile=False):
|
|
model: Union[NaiveTransformer, DualARTransformer] = BaseTransformer.from_pretrained(
|
|
checkpoint_path, load_weights=True
|
|
)
|
|
|
|
model = model.to(device=device, dtype=precision)
|
|
logger.info(f"Restored model from checkpoint")
|
|
|
|
if isinstance(model, DualARTransformer):
|
|
decode_one_token = decode_one_token_ar
|
|
logger.info("Using DualARTransformer")
|
|
else:
|
|
decode_one_token = decode_one_token_naive
|
|
logger.info("Using NaiveTransformer")
|
|
|
|
if compile:
|
|
logger.info("Compiling function...")
|
|
decode_one_token = torch.compile(
|
|
decode_one_token,
|
|
fullgraph=True,
|
|
backend="inductor" if torch.cuda.is_available() else "aot_eager",
|
|
mode="reduce-overhead" if torch.cuda.is_available() else None,
|
|
)
|
|
|
|
return model.eval(), decode_one_token
|
|
|
|
|
|
@dataclass
|
|
class GenerateResponse:
|
|
action: Literal["sample", "next"]
|
|
codes: Optional[torch.Tensor] = None
|
|
text: Optional[str] = None
|
|
|
|
@torch.no_grad()
|
|
@spaces.GPU(duration=120)
|
|
def generate_long(
|
|
*,
|
|
model,
|
|
device: str | torch.device,
|
|
decode_one_token: callable,
|
|
text: str,
|
|
num_samples: int = 1,
|
|
max_new_tokens: int = 0,
|
|
top_p: int = 0.7,
|
|
repetition_penalty: float = 1.5,
|
|
temperature: float = 0.7,
|
|
compile: bool = False,
|
|
iterative_prompt: bool = True,
|
|
max_length: int = 2048,
|
|
chunk_length: int = 150,
|
|
prompt_text: Optional[str | list[str]] = None,
|
|
prompt_tokens: Optional[torch.Tensor | list[torch.Tensor]] = None,
|
|
):
|
|
assert 0 < top_p <= 1, "top_p must be in (0, 1]"
|
|
assert 0 < repetition_penalty < 2, "repetition_penalty must be in (0, 2)"
|
|
assert 0 < temperature < 2, "temperature must be in (0, 2)"
|
|
|
|
use_prompt = prompt_text is not None and prompt_tokens is not None
|
|
if use_prompt and isinstance(prompt_text, str):
|
|
prompt_text = [prompt_text]
|
|
prompt_tokens = [prompt_tokens]
|
|
|
|
assert use_prompt is False or len(prompt_text) == len(
|
|
prompt_tokens
|
|
), "Prompt text and tokens must have the same length"
|
|
|
|
model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
tokenizer = model.tokenizer
|
|
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
|
|
|
encoded = []
|
|
texts = split_text(text, chunk_length) if iterative_prompt else [text]
|
|
encoded_prompts = []
|
|
|
|
if use_prompt:
|
|
for idx, (t, c) in enumerate(zip(prompt_text, prompt_tokens)):
|
|
encoded_prompts.append(
|
|
encode_tokens(
|
|
tokenizer,
|
|
string=t,
|
|
device=device,
|
|
prompt_tokens=c,
|
|
num_codebooks=model.config.num_codebooks,
|
|
)
|
|
)
|
|
|
|
for idx, text in enumerate(texts):
|
|
encoded.append(
|
|
encode_tokens(
|
|
tokenizer,
|
|
string=text,
|
|
device=device,
|
|
num_codebooks=model.config.num_codebooks,
|
|
)
|
|
)
|
|
logger.info(f"Encoded text: {text}")
|
|
|
|
|
|
|
|
temperature = torch.tensor(temperature, device=device, dtype=torch.float)
|
|
top_p = torch.tensor(top_p, device=device, dtype=torch.float)
|
|
repetition_penalty = torch.tensor(
|
|
repetition_penalty, device=device, dtype=torch.float
|
|
)
|
|
|
|
for sample_idx in range(num_samples):
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
|
|
global_encoded = []
|
|
seg_idx = 0
|
|
|
|
while seg_idx < len(encoded):
|
|
logger.info(
|
|
f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}"
|
|
)
|
|
|
|
seg = encoded[seg_idx]
|
|
global_encoded.append(seg)
|
|
|
|
lengths = reversed([seg.size(1) for seg in global_encoded])
|
|
|
|
|
|
count = 0
|
|
for i, length in enumerate(lengths):
|
|
count += length
|
|
if count + length > max_length - 1024 - sum(
|
|
t.shape[1] for t in encoded_prompts
|
|
):
|
|
break
|
|
|
|
if i != 0 and i % 2 == 0:
|
|
i -= 1
|
|
|
|
|
|
if i < len(global_encoded) - 2:
|
|
partial_encoded = global_encoded[:2] + global_encoded[-i:]
|
|
else:
|
|
partial_encoded = global_encoded
|
|
|
|
if use_prompt:
|
|
partial_encoded = encoded_prompts + partial_encoded
|
|
|
|
cat_encoded = torch.cat(partial_encoded, dim=1)
|
|
prompt_length = cat_encoded.size(1)
|
|
|
|
t0 = time.perf_counter()
|
|
y = generate(
|
|
model=model,
|
|
prompt=cat_encoded,
|
|
max_new_tokens=max_new_tokens,
|
|
im_end_id=im_end_id,
|
|
decode_one_token=decode_one_token,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
repetition_penalty=repetition_penalty,
|
|
)
|
|
|
|
if sample_idx == 0 and seg_idx == 0 and compile:
|
|
logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
|
|
t = time.perf_counter() - t0
|
|
|
|
tokens_generated = y.size(1) - prompt_length
|
|
tokens_sec = tokens_generated / t
|
|
logger.info(
|
|
f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec"
|
|
)
|
|
logger.info(
|
|
f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s"
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
logger.info(
|
|
f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB"
|
|
)
|
|
|
|
|
|
|
|
codes = y[1:, prompt_length:-1].clone()
|
|
codes = codes - 1
|
|
assert (codes >= 0).all(), f"Negative code found"
|
|
|
|
decoded = y[:, prompt_length:-1].clone()
|
|
|
|
|
|
global_encoded.append(decoded)
|
|
assert (codes >= 0).all(), f"Negative code found: {codes}"
|
|
yield GenerateResponse(action="sample", codes=codes, text=texts[seg_idx])
|
|
seg_idx += 1
|
|
|
|
|
|
yield GenerateResponse(action="next")
|
|
|
|
|
|
@dataclass
|
|
class WrappedGenerateResponse:
|
|
status: Literal["success", "error"]
|
|
response: Optional[GenerateResponse | Exception] = None
|
|
|
|
|
|
@dataclass
|
|
class GenerateRequest:
|
|
request: dict
|
|
response_queue: queue.Queue
|
|
|
|
|
|
def launch_thread_safe_queue(
|
|
checkpoint_path,
|
|
device,
|
|
precision,
|
|
compile: bool = False,
|
|
):
|
|
input_queue = queue.Queue()
|
|
init_event = threading.Event()
|
|
|
|
def worker():
|
|
model, decode_one_token = load_model(
|
|
checkpoint_path, device, precision, compile=compile
|
|
)
|
|
init_event.set()
|
|
|
|
while True:
|
|
item: GenerateRequest | None = input_queue.get()
|
|
if item is None:
|
|
break
|
|
|
|
kwargs = item.request
|
|
response_queue = item.response_queue
|
|
|
|
try:
|
|
for chunk in generate_long(
|
|
model=model, decode_one_token=decode_one_token, **kwargs
|
|
):
|
|
response_queue.put(
|
|
WrappedGenerateResponse(status="success", response=chunk)
|
|
)
|
|
except Exception as e:
|
|
response_queue.put(WrappedGenerateResponse(status="error", response=e))
|
|
|
|
threading.Thread(target=worker, daemon=True).start()
|
|
init_event.wait()
|
|
|
|
return input_queue
|
|
|
|
|
|
@click.command()
|
|
@click.option(
|
|
"--text",
|
|
type=str,
|
|
default="你说的对, 但是原神是一款由米哈游自主研发的开放世界手游.",
|
|
)
|
|
@click.option("--prompt-text", type=str, default=None, multiple=True)
|
|
@click.option(
|
|
"--prompt-tokens",
|
|
type=click.Path(path_type=Path, exists=True),
|
|
default=None,
|
|
multiple=True,
|
|
)
|
|
@click.option("--num-samples", type=int, default=1)
|
|
@click.option("--max-new-tokens", type=int, default=0)
|
|
@click.option("--top-p", type=float, default=0.7)
|
|
@click.option("--repetition-penalty", type=float, default=1.2)
|
|
@click.option("--temperature", type=float, default=0.7)
|
|
@click.option(
|
|
"--checkpoint-path",
|
|
type=click.Path(path_type=Path, exists=True),
|
|
default="checkpoints/fish-speech-1.4",
|
|
)
|
|
@click.option("--device", type=str, default="cuda")
|
|
@click.option("--compile/--no-compile", default=False)
|
|
@click.option("--seed", type=int, default=42)
|
|
@click.option("--half/--no-half", default=False)
|
|
@click.option("--iterative-prompt/--no-iterative-prompt", default=True)
|
|
@click.option("--chunk-length", type=int, default=100)
|
|
def main(
|
|
text: str,
|
|
prompt_text: Optional[list[str]],
|
|
prompt_tokens: Optional[list[Path]],
|
|
num_samples: int,
|
|
max_new_tokens: int,
|
|
top_p: int,
|
|
repetition_penalty: float,
|
|
temperature: float,
|
|
checkpoint_path: Path,
|
|
device: str,
|
|
compile: bool,
|
|
seed: int,
|
|
half: bool,
|
|
iterative_prompt: bool,
|
|
chunk_length: int,
|
|
) -> None:
|
|
|
|
precision = torch.half if half else torch.bfloat16
|
|
|
|
if prompt_text is not None and len(prompt_text) != len(prompt_tokens):
|
|
raise ValueError(
|
|
f"Number of prompt text ({len(prompt_text)}) and prompt tokens ({len(prompt_tokens)}) should be the same"
|
|
)
|
|
|
|
logger.info("Loading model ...")
|
|
t0 = time.time()
|
|
model, decode_one_token = load_model(
|
|
checkpoint_path, device, precision, compile=compile
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
|
|
logger.info(f"Time to load model: {time.time() - t0:.02f} seconds")
|
|
|
|
if prompt_tokens is not None:
|
|
prompt_tokens = [torch.from_numpy(np.load(p)).to(device) for p in prompt_tokens]
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
generator = generate_long(
|
|
model=model,
|
|
device=device,
|
|
decode_one_token=decode_one_token,
|
|
text=text,
|
|
num_samples=num_samples,
|
|
max_new_tokens=max_new_tokens,
|
|
top_p=top_p,
|
|
repetition_penalty=repetition_penalty,
|
|
temperature=temperature,
|
|
compile=compile,
|
|
iterative_prompt=iterative_prompt,
|
|
chunk_length=chunk_length,
|
|
prompt_text=prompt_text,
|
|
prompt_tokens=prompt_tokens,
|
|
)
|
|
|
|
idx = 0
|
|
codes = []
|
|
|
|
for response in generator:
|
|
if response.action == "sample":
|
|
codes.append(response.codes)
|
|
logger.info(f"Sampled text: {response.text}")
|
|
elif response.action == "next":
|
|
if codes:
|
|
np.save(f"codes_{idx}.npy", torch.cat(codes, dim=1).cpu().numpy())
|
|
logger.info(f"Saved codes to codes_{idx}.npy")
|
|
logger.info(f"Next sample")
|
|
codes = []
|
|
idx += 1
|
|
else:
|
|
logger.error(f"Error: {response}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|