|
from lightning.pytorch.utilities import rank_zero_only
|
|
|
|
from fish_speech.utils import logger as log
|
|
|
|
|
|
@rank_zero_only
|
|
def log_hyperparameters(object_dict: dict) -> None:
|
|
"""Controls which config parts are saved by lightning loggers.
|
|
|
|
Additionally saves:
|
|
- Number of model parameters
|
|
"""
|
|
|
|
hparams = {}
|
|
|
|
cfg = object_dict["cfg"]
|
|
model = object_dict["model"]
|
|
trainer = object_dict["trainer"]
|
|
|
|
if not trainer.logger:
|
|
log.warning("Logger not found! Skipping hyperparameter logging...")
|
|
return
|
|
|
|
hparams["model"] = cfg["model"]
|
|
|
|
|
|
hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
|
|
hparams["model/params/trainable"] = sum(
|
|
p.numel() for p in model.parameters() if p.requires_grad
|
|
)
|
|
hparams["model/params/non_trainable"] = sum(
|
|
p.numel() for p in model.parameters() if not p.requires_grad
|
|
)
|
|
|
|
hparams["data"] = cfg["data"]
|
|
hparams["trainer"] = cfg["trainer"]
|
|
|
|
hparams["callbacks"] = cfg.get("callbacks")
|
|
hparams["extras"] = cfg.get("extras")
|
|
|
|
hparams["task_name"] = cfg.get("task_name")
|
|
hparams["tags"] = cfg.get("tags")
|
|
hparams["ckpt_path"] = cfg.get("ckpt_path")
|
|
hparams["seed"] = cfg.get("seed")
|
|
|
|
|
|
for logger in trainer.loggers:
|
|
logger.log_hyperparams(hparams)
|
|
|