Spaces:
Runtime error
Runtime error
File size: 16,873 Bytes
7f48662 44bc074 7f48662 44bc074 7f48662 44bc074 7f48662 44bc074 7f48662 44bc074 7f48662 44bc074 7f48662 44bc074 7f48662 44bc074 7f48662 6209fe3 44bc074 7f48662 6209fe3 7f48662 6209fe3 7f48662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
# The code is revised from DiT
import os
import torch
import torch.nn as nn
import numpy as np
import math
from typing import Dict
from diffusers.loaders import PeftAdapterMixin
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
from huggingface_hub import snapshot_download
from OmniGen.transformer import Phi3Config, Phi3Transformer
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, dtype=torch.float32):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
t_emb = self.mlp(t_freq)
return t_emb
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=1):
"""
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
class PatchEmbedMR(nn.Module):
""" 2D Image to Patch Embedding
"""
def __init__(
self,
patch_size: int = 2,
in_chans: int = 4,
embed_dim: int = 768,
bias: bool = True,
):
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
return x
class OmniGen(nn.Module, PeftAdapterMixin):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
transformer_config: Phi3Config,
patch_size=2,
in_channels=4,
pe_interpolation: float = 1.0,
pos_embed_max_size: int = 192,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.pos_embed_max_size = pos_embed_max_size
hidden_size = transformer_config.hidden_size
self.x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True)
self.input_x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True)
self.time_token = TimestepEmbedder(hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.pe_interpolation = pe_interpolation
pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, interpolation_scale=self.pe_interpolation, base_size=64)
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=True)
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
self.llm = Phi3Transformer(config=transformer_config)
self.llm.config.use_cache = False
@classmethod
def from_pretrained(cls, model_name):
if not os.path.exists(os.path.join(model_name, 'model.pt')):
cache_folder = os.getenv('HF_HUB_CACHE')
model_name = snapshot_download(repo_id=model_name,
cache_dir=cache_folder,
ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'])
config = Phi3Config.from_pretrained(model_name)
model = cls(config)
ckpt = torch.load(os.path.join(model_name, 'model.pt'), map_location='cpu')
model.load_state_dict(ckpt)
return model
def initialize_weights(self):
assert not hasattr(self, "llama")
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
w = self.input_x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.time_token.mlp[0].weight, std=0.02)
nn.init.normal_(self.time_token.mlp[2].weight, std=0.02)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
x = x.reshape(shape=(x.shape[0], h//self.patch_size, w//self.patch_size, self.patch_size, self.patch_size, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h, w))
return imgs
def cropped_pos_embed(self, height, width):
"""Crops positional embeddings for SD3 compatibility."""
if self.pos_embed_max_size is None:
raise ValueError("`pos_embed_max_size` must be set for cropping.")
height = height // self.patch_size
width = width // self.patch_size
if height > self.pos_embed_max_size:
raise ValueError(
f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
if width > self.pos_embed_max_size:
raise ValueError(
f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
top = (self.pos_embed_max_size - height) // 2
left = (self.pos_embed_max_size - width) // 2
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
# print(top, top + height, left, left + width, spatial_pos_embed.size())
spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
return spatial_pos_embed
def patch_multiple_resolutions(self, latents, padding_latent=None, is_input_images:bool=False):
if isinstance(latents, list):
return_list = False
if padding_latent is None:
padding_latent = [None] * len(latents)
return_list = True
patched_latents, num_tokens, shapes = [], [], []
for latent, padding in zip(latents, padding_latent):
height, width = latent.shape[-2:]
if is_input_images:
latent = self.input_x_embedder(latent)
else:
latent = self.x_embedder(latent)
pos_embed = self.cropped_pos_embed(height, width)
latent = latent + pos_embed
if padding is not None:
latent = torch.cat([latent, padding], dim=-2)
patched_latents.append(latent)
num_tokens.append(pos_embed.size(1))
shapes.append([height, width])
if not return_list:
latents = torch.cat(patched_latents, dim=0)
else:
latents = patched_latents
else:
height, width = latents.shape[-2:]
if is_input_images:
latents = self.input_x_embedder(latents)
else:
latents = self.x_embedder(latents)
pos_embed = self.cropped_pos_embed(height, width)
latents = latents + pos_embed
num_tokens = latents.size(1)
shapes = [height, width]
return latents, num_tokens, shapes
def forward(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, padding_latent=None, past_key_values=None, return_past_key_values=True):
"""
"""
input_is_list = isinstance(x, list)
x, num_tokens, shapes = self.patch_multiple_resolutions(x, padding_latent)
time_token = self.time_token(timestep, dtype=x[0].dtype).unsqueeze(1)
if input_img_latents is not None:
input_latents, _, _ = self.patch_multiple_resolutions(input_img_latents, is_input_images=True)
if input_ids is not None:
condition_embeds = self.llm.embed_tokens(input_ids).clone()
input_img_inx = 0
for b_inx in input_image_sizes.keys():
for start_inx, end_inx in input_image_sizes[b_inx]:
condition_embeds[b_inx, start_inx: end_inx] = input_latents[input_img_inx]
input_img_inx += 1
if input_img_latents is not None:
assert input_img_inx == len(input_latents)
input_emb = torch.cat([condition_embeds, time_token, x], dim=1)
else:
input_emb = torch.cat([time_token, x], dim=1)
output = self.llm(inputs_embeds=input_emb, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values)
output, past_key_values = output.last_hidden_state, output.past_key_values
if input_is_list:
image_embedding = output[:, -max(num_tokens):]
time_emb = self.t_embedder(timestep, dtype=x.dtype)
x = self.final_layer(image_embedding, time_emb)
latents = []
for i in range(x.size(0)):
latent = x[i:i+1, :num_tokens[i]]
latent = self.unpatchify(latent, shapes[i][0], shapes[i][1])
latents.append(latent)
else:
image_embedding = output[:, -num_tokens:]
time_emb = self.t_embedder(timestep, dtype=x.dtype)
x = self.final_layer(image_embedding, time_emb)
latents = self.unpatchify(x, shapes[0], shapes[1])
if return_past_key_values:
return latents, past_key_values
return latents
@torch.no_grad()
def forward_with_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
self.llm.config.use_cache = use_kv_cache
model_out, past_key_values = self.forward(x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, past_key_values=past_key_values, return_past_key_values=True)
if use_img_cfg:
cond, uncond, img_cond = torch.split(model_out, len(model_out) // 3, dim=0)
cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond)
model_out = [cond, cond, cond]
else:
cond, uncond = torch.split(model_out, len(model_out) // 2, dim=0)
cond = uncond + cfg_scale * (cond - uncond)
model_out = [cond, cond]
return torch.cat(model_out, dim=0), past_key_values
@torch.no_grad()
def forward_with_separate_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache, return_past_key_values=True):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
self.llm.config.use_cache = use_kv_cache
if past_key_values is None:
past_key_values = [None] * len(attention_mask)
x = torch.split(x, len(x) // len(attention_mask), dim=0)
timestep = timestep.to(x[0].dtype)
timestep = torch.split(timestep, len(timestep) // len(input_ids), dim=0)
model_out, pask_key_values = [], []
for i in range(len(input_ids)):
temp_out, temp_pask_key_values = self.forward(x[i], timestep[i], input_ids[i], input_img_latents[i], input_image_sizes[i], attention_mask[i], position_ids[i], past_key_values[i])
model_out.append(temp_out)
pask_key_values.append(temp_pask_key_values)
if len(model_out) == 3:
cond, uncond, img_cond = model_out
cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond)
model_out = [cond, cond, cond]
elif len(model_out) == 2:
cond, uncond = model_out
cond = uncond + cfg_scale * (cond - uncond)
model_out = [cond, cond]
else:
return model_out[0]
return torch.cat(model_out, dim=0), pask_key_values
|