File size: 9,788 Bytes
7f48662
 
 
 
 
 
 
 
44bc074
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bc074
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bc074
7f48662
 
 
44bc074
7f48662
44bc074
7f48662
 
 
 
 
 
 
44bc074
 
 
 
 
 
 
 
7f48662
 
 
44bc074
 
 
 
 
 
 
 
 
 
 
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bc074
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bc074
 
 
7f48662
 
 
 
 
 
44bc074
 
 
7f48662
 
 
 
 
 
 
 
 
 
 
 
44bc074
 
 
 
 
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import inspect
from typing import Any, Callable, Dict, List, Optional, Union

from PIL import Image
import numpy as np
import torch
from huggingface_hub import snapshot_download
from peft import LoraConfig, PeftModel
from diffusers.models import AutoencoderKL
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)

from OmniGen import OmniGen, OmniGenProcessor, OmniGenScheduler


logger = logging.get_logger(__name__) 

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> from OmniGen import OmniGenPipeline
        >>> pipe = FluxControlNetPipeline.from_pretrained(
        ...     base_model
        ... )
        >>> prompt = "A woman holds a bouquet of flowers and faces the camera"
        >>> image = pipe(
        ...     prompt,
        ...     guidance_scale=3.0,
        ...     num_inference_steps=50,
        ... ).images[0]
        >>> image.save("t2i.png")
        ```
"""



class OmniGenPipeline:
    def __init__(
        self,
        vae: AutoencoderKL,
        model: OmniGen,
        processor: OmniGenProcessor,
    ):
        self.vae = vae
        self.model = model
        self.processor = processor

        self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        self.model.to(self.device)
        self.model.eval()
        self.vae.to(self.device)

    @classmethod
    def from_pretrained(cls, model_name, vae_path: str=None):
        if not os.path.exists(model_name):
            logger.info("Model not found, downloading...")
            cache_folder = os.getenv('HF_HUB_CACHE')
            model_name = snapshot_download(repo_id=model_name,
                                           cache_dir=cache_folder,
                                           ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'])
            logger.info(f"Downloaded model to {model_name}")
        model = OmniGen.from_pretrained(model_name)
        processor = OmniGenProcessor.from_pretrained(model_name)

        if os.path.exists(os.path.join(model_name, "vae")):
            vae = AutoencoderKL.from_pretrained(os.path.join(model_name, "vae"))
        elif vae_path is not None:
            vae = AutoencoderKL.from_pretrained(vae_path).to(device)
        else:
            logger.info(f"No VAE found in {model_name}, downloading stabilityai/sdxl-vae from HF")
            vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to(device)

        return cls(vae, model, processor)
    
    def merge_lora(self, lora_path: str):
        model = PeftModel.from_pretrained(self.model, lora_path)
        model.merge_and_unload()
        self.model = model
    
    def to(self, device: Union[str, torch.device]):
        if isinstance(device, str):
            device = torch.device(device)
        self.model.to(device)
        self.vae.to(device)

    def vae_encode(self, x, dtype):
        if self.vae.config.shift_factor is not None:
            x = self.vae.encode(x).latent_dist.sample()
            x = (x - self.vae.config.shift_factor) * self.vae.config.scaling_factor
        else:
            x = self.vae.encode(x).latent_dist.sample().mul_(self.vae.config.scaling_factor)
        x = x.to(dtype)
        return x
    
    def move_to_device(self, data):
        if isinstance(data, list):
            return [x.to(self.device) for x in data]
        return data.to(self.device)


    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]],
        input_images: Union[List[str], List[List[str]]] = None,
        height: int = 1024,
        width: int = 1024,
        num_inference_steps: int = 50,
        guidance_scale: float = 3,
        use_img_guidance: bool = True,
        img_guidance_scale: float = 1.6,
        separate_cfg_infer: bool = False,
        use_kv_cache: bool = True,
        dtype: torch.dtype = torch.bfloat16,
        seed: int = None,
        ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation. 
            input_images (`List[str]` or `List[List[str]]`, *optional*):
                The list of input images. We will replace the "<|image_i|>" in prompt with the 1-th image in list.
            height (`int`, *optional*, defaults to 1024):
                The height in pixels of the generated image. The number must be a multiple of 16.
            width (`int`, *optional*, defaults to 1024):
                The width in pixels of the generated image. The number must be a multiple of 16.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            use_img_guidance (`bool`, *optional*, defaults to True):
                Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800). 
            img_guidance_scale (`float`, *optional*, defaults to 1.6):
                Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800). 
            separate_cfg_infer (`bool`, *optional*, defaults to False):
                Perform inference on images with different guidance separately; this can save memory when generating images of large size at the expense of slower inference.
            use_kv_cache (`bool`, *optional*, defaults to True): enable kv cache to speed up the inference
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
        Examples:

        Returns:
            A list with the generated images.
        """
        assert height%16 == 0 and width%16 == 0
        if separate_cfg_infer:
            use_kv_cache = False
            # raise "Currently, don't support both use_kv_cache and separate_cfg_infer"
        if input_images is None:
            use_img_guidance = False
        if isinstance(prompt, str):
            prompt = [prompt]
            input_images = [input_images] if input_images is not None else None

        input_data = self.processor(prompt, input_images, height=height, width=width, use_img_cfg=use_img_guidance, separate_cfg_input=separate_cfg_infer)

        num_prompt = len(prompt)
        num_cfg = 2 if use_img_guidance else 1
        latent_size_h, latent_size_w = height//8, width//8

        if seed is not None:
            generator = torch.Generator(device=self.device).manual_seed(seed)
        else:
            generator = None
        latents = torch.randn(num_prompt, 4, latent_size_h, latent_size_w, device=self.device, generator=generator)
        latents = torch.cat([latents]*(1+num_cfg), 0).to(dtype)

        input_img_latents = []
        if separate_cfg_infer:
            for temp_pixel_values in input_data['input_pixel_values']:
                temp_input_latents = []
                for img in temp_pixel_values:
                    img = self.vae_encode(img.to(self.device), dtype)
                    temp_input_latents.append(img)
                input_img_latents.append(temp_input_latents)
        else:
            for img in input_data['input_pixel_values']:
                img = self.vae_encode(img.to(self.device), dtype)
                input_img_latents.append(img)

        model_kwargs = dict(input_ids=self.move_to_device(input_data['input_ids']), 
            input_img_latents=input_img_latents, 
            input_image_sizes=input_data['input_image_sizes'], 
            attention_mask=self.move_to_device(input_data["attention_mask"]), 
            position_ids=self.move_to_device(input_data["position_ids"]), 
            cfg_scale=guidance_scale,
            img_cfg_scale=img_guidance_scale,
            use_img_cfg=use_img_guidance,
            use_kv_cache=use_kv_cache)
        
        if separate_cfg_infer:
            func = self.model.forward_with_separate_cfg
        else:
            func = self.model.forward_with_cfg
        self.model.to(dtype)

        scheduler = OmniGenScheduler(num_steps=num_inference_steps)
        samples = scheduler(latents, func, model_kwargs, use_kv_cache=use_kv_cache)
        samples = samples.chunk((1+num_cfg), dim=0)[0]

        samples = samples.to(torch.float32)
        if self.vae.config.shift_factor is not None:
            samples = samples / self.vae.config.scaling_factor + self.vae.config.shift_factor
        else:
            samples = samples / self.vae.config.scaling_factor   
        samples = self.vae.decode(samples).sample
        
        output_samples = (samples * 0.5 + 0.5).clamp(0, 1)*255
        output_samples = output_samples.permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
        output_images = []
        for i, sample in enumerate(output_samples):  
            output_images.append(Image.fromarray(sample))
        
        return output_images