File size: 7,814 Bytes
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bc074
7f48662
 
 
 
 
 
 
 
 
 
 
 
a713a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
a713a09
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a713a09
 
7f48662
a713a09
 
 
 
 
 
 
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a713a09
7f48662
a713a09
 
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a713a09
 
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a713a09
7f48662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import math
import warnings
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from huggingface_hub import snapshot_download

from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers import Phi3Config, Phi3Model
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.utils import logging

logger = logging.get_logger(__name__)


class Phi3Transformer(Phi3Model):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
    We only modified the attention mask
    Args:
        config: Phi3Config
    """
    def prefetch_layer(self, layer_idx: int, device: torch.device):
        "Starts prefetching the next layer cache"
        with torch.cuda.stream(self.prefetch_stream):
            # Prefetch next layer tensors to GPU
            for name, param in self.layers[layer_idx].named_parameters():
                param.data = param.data.to(device, non_blocking=True)

    def evict_previous_layer(self, layer_idx: int):
        "Moves the previous layer cache to the CPU"
        prev_layer_idx = layer_idx - 1
        for name, param in self.layers[prev_layer_idx].named_parameters():
            param.data = param.data.to("cpu", non_blocking=True)
            
    def get_offlaod_layer(self, layer_idx: int, device: torch.device):
        # init stream
        if not hasattr(self, "prefetch_stream"):
            self.prefetch_stream = torch.cuda.Stream()

        # delete previous layer
        torch.cuda.current_stream().synchronize()
        self.evict_previous_layer(layer_idx)
        
        # make sure the current layer is ready
        torch.cuda.synchronize(self.prefetch_stream)

        # load next layer
        self.prefetch_layer((layer_idx + 1) % len(self.layers), device)
        

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        offload_model: Optional[bool] = False,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # kept for BC (non `Cache` `past_key_values` inputs)
        return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):
            return_legacy_cache = True
            if past_key_values is None:
                past_key_values = DynamicCache()
            else:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                logger.warning_once(
                    "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
                    "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
                    "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
                )

        # if inputs_embeds is None:
        #     inputs_embeds = self.embed_tokens(input_ids)

        # if cache_position is None:
        #     past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        #     cache_position = torch.arange(
        #         past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
        #     )
        # if position_ids is None:
        #     position_ids = cache_position.unsqueeze(0)

        if attention_mask is not None and attention_mask.dim() == 3:
            dtype = inputs_embeds.dtype
            min_dtype = torch.finfo(dtype).min
            attention_mask = (1 - attention_mask) * min_dtype
            attention_mask = attention_mask.unsqueeze(1).to(inputs_embeds.dtype)
        else:
            raise 
            # causal_mask = self._update_causal_mask(
            #     attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
            # )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        layer_idx = -1
        for decoder_layer in self.layers:
            layer_idx += 1

            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                )
            else:
                if offload_model and not self.training:
                    self.get_offlaod_layer(layer_idx, device=inputs_embeds.device)
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            print('************')
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )