import os import inspect from typing import Any, Callable, Dict, List, Optional, Union import gc from PIL import Image import numpy as np import torch from huggingface_hub import snapshot_download from peft import LoraConfig, PeftModel from diffusers.models import AutoencoderKL from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from safetensors.torch import load_file from OmniGen import OmniGen, OmniGenProcessor, OmniGenScheduler logger = logging.get_logger(__name__) EXAMPLE_DOC_STRING = """ Examples: ```py >>> from OmniGen import OmniGenPipeline >>> pipe = FluxControlNetPipeline.from_pretrained( ... base_model ... ) >>> prompt = "A woman holds a bouquet of flowers and faces the camera" >>> image = pipe( ... prompt, ... guidance_scale=2.5, ... num_inference_steps=50, ... ).images[0] >>> image.save("t2i.png") ``` """ 90 class OmniGenPipeline: def __init__( self, vae: AutoencoderKL, model: OmniGen, processor: OmniGenProcessor, ): self.vae = vae self.model = model self.processor = processor if torch.cuda.is_available(): self.device = torch.device("cuda") elif torch.backends.mps.is_available(): self.device = torch.device("mps") elif is_torch_npu_available(): self.device = torch.device("npu") else: logger.info("Don't detect any available devices, using CPU instead") self.device = torch.device("cpu") self.model.to(torch.bfloat16) self.model.eval() self.vae.eval() self.model_cpu_offload = False @classmethod def from_pretrained(cls, model_name, vae_path: str=None): if not os.path.exists(model_name) or (not os.path.exists(os.path.join(model_name, 'model.safetensors')) and model_name == "Shitao/OmniGen-v1"): logger.info("Model not found, downloading...") cache_folder = os.getenv('HF_HUB_CACHE') model_name = snapshot_download(repo_id=model_name, cache_dir=cache_folder, ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5', 'model.pt']) logger.info(f"Downloaded model to {model_name}") model = OmniGen.from_pretrained(model_name) processor = OmniGenProcessor.from_pretrained(model_name) if os.path.exists(os.path.join(model_name, "vae")): vae = AutoencoderKL.from_pretrained(os.path.join(model_name, "vae")) elif vae_path is not None: vae = AutoencoderKL.from_pretrained(vae_path).to(device) else: logger.info(f"No VAE found in {model_name}, downloading stabilityai/sdxl-vae from HF") vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to(device) return cls(vae, model, processor) def merge_lora(self, lora_path: str): model = PeftModel.from_pretrained(self.model, lora_path) model.merge_and_unload() self.model = model def to(self, device: Union[str, torch.device]): if isinstance(device, str): device = torch.device(device) self.model.to(device) self.vae.to(device) self.device = device def vae_encode(self, x, dtype): if self.vae.config.shift_factor is not None: x = self.vae.encode(x).latent_dist.sample() x = (x - self.vae.config.shift_factor) * self.vae.config.scaling_factor else: x = self.vae.encode(x).latent_dist.sample().mul_(self.vae.config.scaling_factor) x = x.to(dtype) return x def move_to_device(self, data): if isinstance(data, list): return [x.to(self.device) for x in data] return data.to(self.device) def enable_model_cpu_offload(self): self.model_cpu_offload = True self.model.to("cpu") self.vae.to("cpu") torch.cuda.empty_cache() # Clear VRAM gc.collect() # Run garbage collection to free system RAM def disable_model_cpu_offload(self): self.model_cpu_offload = False self.model.to(self.device) self.vae.to(self.device) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], input_images: Union[List[str], List[List[str]]] = None, height: int = 1024, width: int = 1024, num_inference_steps: int = 50, guidance_scale: float = 3, use_img_guidance: bool = True, img_guidance_scale: float = 1.6, max_input_image_size: int = 1024, separate_cfg_infer: bool = True, offload_model: bool = False, use_kv_cache: bool = True, offload_kv_cache: bool = True, use_input_image_size_as_output: bool = False, dtype: torch.dtype = torch.bfloat16, seed: int = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. input_images (`List[str]` or `List[List[str]]`, *optional*): The list of input images. We will replace the "<|image_i|>" in prompt with the 1-th image in list. height (`int`, *optional*, defaults to 1024): The height in pixels of the generated image. The number must be a multiple of 16. width (`int`, *optional*, defaults to 1024): The width in pixels of the generated image. The number must be a multiple of 16. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. use_img_guidance (`bool`, *optional*, defaults to True): Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800). img_guidance_scale (`float`, *optional*, defaults to 1.6): Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800). max_input_image_size (`int`, *optional*, defaults to 1024): the maximum size of input image, which will be used to crop the input image to the maximum size separate_cfg_infer (`bool`, *optional*, defaults to False): Perform inference on images with different guidance separately; this can save memory when generating images of large size at the expense of slower inference. use_kv_cache (`bool`, *optional*, defaults to True): enable kv cache to speed up the inference offload_kv_cache (`bool`, *optional*, defaults to True): offload the cached key and value to cpu, which can save memory but slow down the generation silightly offload_model (`bool`, *optional*, defaults to False): offload the model to cpu, which can save memory but slow down the generation use_input_image_size_as_output (bool, defaults to False): whether to use the input image size as the output image size, which can be used for single-image input, e.g., image editing task seed (`int`, *optional*): A random seed for generating output. dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`): data type for the model Examples: Returns: A list with the generated images. """ # check inputs: if use_input_image_size_as_output: assert isinstance(prompt, str) and len(input_images) == 1, "if you want to make sure the output image have the same size as the input image, please only input one image instead of multiple input images" else: assert height%16 == 0 and width%16 == 0, "The height and width must be a multiple of 16." if input_images is None: use_img_guidance = False if isinstance(prompt, str): prompt = [prompt] input_images = [input_images] if input_images is not None else None # set model and processor if max_input_image_size != self.processor.max_image_size: self.processor = OmniGenProcessor(self.processor.text_tokenizer, max_image_size=max_input_image_size) if offload_model: self.enable_model_cpu_offload() else: self.disable_model_cpu_offload() input_data = self.processor(prompt, input_images, height=height, width=width, use_img_cfg=use_img_guidance, separate_cfg_input=separate_cfg_infer, use_input_image_size_as_output=use_input_image_size_as_output) num_prompt = len(prompt) num_cfg = 2 if use_img_guidance else 1 if use_input_image_size_as_output: if separate_cfg_infer: height, width = input_data['input_pixel_values'][0][0].shape[-2:] else: height, width = input_data['input_pixel_values'][0].shape[-2:] latent_size_h, latent_size_w = height//8, width//8 if seed is not None: generator = torch.Generator(device=self.device).manual_seed(seed) else: generator = None latents = torch.randn(num_prompt, 4, latent_size_h, latent_size_w, device=self.device, generator=generator) latents = torch.cat([latents]*(1+num_cfg), 0).to(dtype) if input_images is not None and self.model_cpu_offload: self.vae.to(self.device) input_img_latents = [] if separate_cfg_infer: for temp_pixel_values in input_data['input_pixel_values']: temp_input_latents = [] for img in temp_pixel_values: img = self.vae_encode(img.to(self.device), dtype) temp_input_latents.append(img) input_img_latents.append(temp_input_latents) else: for img in input_data['input_pixel_values']: img = self.vae_encode(img.to(self.device), dtype) input_img_latents.append(img) if input_images is not None and self.model_cpu_offload: self.vae.to('cpu') torch.cuda.empty_cache() # Clear VRAM gc.collect() # Run garbage collection to free system RAM model_kwargs = dict(input_ids=self.move_to_device(input_data['input_ids']), input_img_latents=input_img_latents, input_image_sizes=input_data['input_image_sizes'], attention_mask=self.move_to_device(input_data["attention_mask"]), position_ids=self.move_to_device(input_data["position_ids"]), cfg_scale=guidance_scale, img_cfg_scale=img_guidance_scale, use_img_cfg=use_img_guidance, use_kv_cache=use_kv_cache, offload_model=offload_model, ) if separate_cfg_infer: func = self.model.forward_with_separate_cfg else: func = self.model.forward_with_cfg self.model.to(dtype) if self.model_cpu_offload: for name, param in self.model.named_parameters(): if 'layers' in name and 'layers.0' not in name: param.data = param.data.cpu() else: param.data = param.data.to(self.device) for buffer_name, buffer in self.model.named_buffers(): setattr(self.model, buffer_name, buffer.to(self.device)) # else: # self.model.to(self.device) scheduler = OmniGenScheduler(num_steps=num_inference_steps) samples = scheduler(latents, func, model_kwargs, use_kv_cache=use_kv_cache, offload_kv_cache=offload_kv_cache) samples = samples.chunk((1+num_cfg), dim=0)[0] if self.model_cpu_offload: self.model.to('cpu') torch.cuda.empty_cache() gc.collect() self.vae.to(self.device) samples = samples.to(torch.float32) if self.vae.config.shift_factor is not None: samples = samples / self.vae.config.scaling_factor + self.vae.config.shift_factor else: samples = samples / self.vae.config.scaling_factor samples = self.vae.decode(samples).sample if self.model_cpu_offload: self.vae.to('cpu') torch.cuda.empty_cache() gc.collect() output_samples = (samples * 0.5 + 0.5).clamp(0, 1)*255 output_samples = output_samples.permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy() output_images = [] for i, sample in enumerate(output_samples): output_images.append(Image.fromarray(sample)) torch.cuda.empty_cache() # Clear VRAM gc.collect() # Run garbage collection to free system RAM return output_images