Spaces:
Running
Running
Update solver.py
Browse files
solver.py
CHANGED
@@ -114,25 +114,47 @@ def process_expression(expr_str):
|
|
114 |
return f"d/dx({format_expression(expr)}) = {format_expression(result)}"
|
115 |
|
116 |
|
117 |
-
elif 'sqrt' in processed_expr:
|
118 |
try:
|
119 |
transformations = standard_transformations + (implicit_multiplication_application,)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
126 |
steps = []
|
127 |
-
steps.append(f"**Step 1:** Original expression: \n{
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
except Exception as e:
|
134 |
-
|
135 |
-
|
136 |
elif 'factorial' in processed_expr: # Factorial case
|
137 |
expr = parse_expr(processed_expr, transformations=(standard_transformations + (implicit_multiplication_application,)))
|
138 |
result = expr.doit() # Compute the factorial correctly
|
|
|
114 |
return f"d/dx({format_expression(expr)}) = {format_expression(result)}"
|
115 |
|
116 |
|
117 |
+
elif 'sqrt' in processed_expr.lower():
|
118 |
try:
|
119 |
transformations = standard_transformations + (implicit_multiplication_application,)
|
120 |
+
|
121 |
+
# Remove "sqrt" and parse the expression inside
|
122 |
+
expr = sp.parse_expr(processed_expr.replace("sqrt", ""), transformations=transformations)
|
123 |
+
|
124 |
+
sqrt_result = sp.sqrt(expr)
|
125 |
+
|
126 |
+
# If it's sqrt(x^2), simplify it to |x|
|
127 |
+
simplified_result = sp.simplify(sqrt_result)
|
128 |
+
|
129 |
steps = []
|
130 |
+
steps.append(f"**Step 1:** Original expression: \n{to_latex(expr)}")
|
131 |
+
|
132 |
+
# Case 1: Perfect Squares → Show exact value (e.g., sqrt(9) = ±3)
|
133 |
+
if sqrt_result.is_Integer:
|
134 |
+
steps.append(f"**Step 2:** √{to_latex(expr)} is a perfect square")
|
135 |
+
steps.append(f"**Step 3:** Solution: \n±{to_latex(sqrt_result)}")
|
136 |
+
solution = "\n".join(steps)
|
137 |
+
|
138 |
+
# Case 2: Non-Perfect Squares → Show decimal value (e.g., sqrt(2) ≈ 1.41)
|
139 |
+
elif sqrt_result.is_real and not sqrt_result.is_rational:
|
140 |
+
decimal_value = float(sqrt_result.evalf())
|
141 |
+
steps.append(f"**Step 2:** √{to_latex(expr)} is not a perfect square")
|
142 |
+
steps.append(f"**Step 3:** Approximate value: \n{decimal_value}")
|
143 |
+
solution = "\n".join(steps)
|
144 |
+
|
145 |
+
# Case 3: Expressions like √x² → |x|
|
146 |
+
elif simplified_result != sqrt_result:
|
147 |
+
steps.append(f"**Step 2:** Simplification using identity: \n{to_latex(simplified_result)}")
|
148 |
+
solution = "\n".join(steps)
|
149 |
+
|
150 |
+
# Case 4: General Expression → Return as-is
|
151 |
+
else:
|
152 |
+
steps.append(f"**Step 2:** Taking square root: \n{to_latex(sqrt_result)}")
|
153 |
+
steps.append(f"**Step 3:** Considering both positive and negative roots: \n±{to_latex(sqrt_result)}")
|
154 |
+
solution = "\n".join(steps)
|
155 |
|
156 |
except Exception as e:
|
157 |
+
solution = f"Error: {str(e)}"
|
|
|
158 |
elif 'factorial' in processed_expr: # Factorial case
|
159 |
expr = parse_expr(processed_expr, transformations=(standard_transformations + (implicit_multiplication_application,)))
|
160 |
result = expr.doit() # Compute the factorial correctly
|