Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,17 +3,38 @@ import spaces
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
@spaces.GPU
|
16 |
def generate(prompt, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
messages = [
|
18 |
{"role": "system", "content": "Je bent een vriendelijke, behulpzame assistent."},
|
19 |
{"role": "user", "content": prompt}
|
@@ -29,16 +50,33 @@ def generate(prompt, history):
|
|
29 |
**model_inputs,
|
30 |
max_new_tokens=512
|
31 |
)
|
|
|
32 |
generated_ids = [
|
33 |
-
output_ids[len(input_ids):]
|
|
|
34 |
]
|
35 |
|
36 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
37 |
return response
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
fn=generate,
|
43 |
-
)
|
44 |
-
chat_interface.launch(share=True)
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
|
6 |
+
# Global variables to store the loaded model and tokenizer.
|
7 |
+
model = None
|
8 |
+
tokenizer = None
|
9 |
|
10 |
+
@spaces.GPU
|
11 |
+
def load_model(model_name: str):
|
12 |
+
"""
|
13 |
+
Loads the model and tokenizer given the model name.
|
14 |
+
Returns a status message.
|
15 |
+
"""
|
16 |
+
global model, tokenizer
|
17 |
+
try:
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
torch_dtype=torch.bfloat16,
|
21 |
+
device_map="auto"
|
22 |
+
)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
return f"Model '{model_name}' loaded successfully."
|
25 |
+
except Exception as e:
|
26 |
+
return f"Failed to load model '{model_name}': {str(e)}"
|
27 |
|
28 |
@spaces.GPU
|
29 |
def generate(prompt, history):
|
30 |
+
"""
|
31 |
+
Generates a response for the given prompt using the loaded model.
|
32 |
+
If the model is not loaded, informs the user to load it first.
|
33 |
+
"""
|
34 |
+
if model is None or tokenizer is None:
|
35 |
+
return "Please load a model first by entering a model name and clicking the Load Model button."
|
36 |
+
|
37 |
+
# Prepare the chat history (here, a simple system prompt is added)
|
38 |
messages = [
|
39 |
{"role": "system", "content": "Je bent een vriendelijke, behulpzame assistent."},
|
40 |
{"role": "user", "content": prompt}
|
|
|
50 |
**model_inputs,
|
51 |
max_new_tokens=512
|
52 |
)
|
53 |
+
# Remove the input tokens from the generated tokens.
|
54 |
generated_ids = [
|
55 |
+
output_ids[len(input_ids):]
|
56 |
+
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
57 |
]
|
58 |
|
59 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
60 |
return response
|
61 |
|
62 |
+
# Build the Gradio UI using Blocks.
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("## Model Loader")
|
65 |
+
with gr.Row():
|
66 |
+
model_name_input = gr.Textbox(
|
67 |
+
label="Model Name",
|
68 |
+
value="simplescaling/s1-32B",
|
69 |
+
placeholder="Enter model name"
|
70 |
+
)
|
71 |
+
load_button = gr.Button("Load Model")
|
72 |
+
load_status = gr.Textbox(label="Status", interactive=False)
|
73 |
+
|
74 |
+
# When the button is clicked, load_model() is called.
|
75 |
+
load_button.click(fn=load_model, inputs=model_name_input, outputs=load_status)
|
76 |
+
|
77 |
+
gr.Markdown("## Chat Interface")
|
78 |
+
# The ChatInterface calls generate() which uses the loaded model.
|
79 |
+
chat_interface = gr.ChatInterface(fn=generate)
|
80 |
|
81 |
+
# Launch the Gradio app (using share=True if you wish to share it publicly).
|
82 |
+
demo.launch(share=True)
|
|
|
|
|
|