Spaces:
Running
Running
File size: 11,399 Bytes
aee2bfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# src/utils/drive_document_processor.py
from pathlib import Path
from typing import Dict, List, Any, Tuple
import logging
from fastapi import HTTPException
from src.utils.google_drive_service import GoogleDriveService
from src.utils.document_processor import DocumentProcessor
from src.vectorstores.chroma_vectorstore import ChromaVectorStore
from src.utils.logger import logger
class DriveDocumentProcessor:
def __init__(
self,
google_service_account_path: str,
folder_id: str,
temp_dir: str,
doc_processor: DocumentProcessor
):
"""
Initialize Drive Document Processor
Args:
google_service_account_path (str): Path to Google service account credentials
folder_id (str): Google Drive folder ID to process
temp_dir (str): Directory for temporary files
doc_processor (DocumentProcessor): Instance of DocumentProcessor
"""
self.google_drive_service = GoogleDriveService(google_service_account_path)
self.folder_id = folder_id
self.temp_dir = Path(temp_dir)
self.doc_processor = doc_processor
# Create temp directory if it doesn't exist
self.temp_dir.mkdir(exist_ok=True)
# Define supported MIME types
self.supported_mime_types = {
# Google Docs
'application/vnd.google-apps.document': '.docx', # Export Google Docs as DOCX
# Microsoft Word Documents
'application/vnd.openxmlformats-officedocument.wordprocessingml.document': '.docx',
'application/msword': '.doc',
# Microsoft Excel Documents
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': '.xlsx',
'application/vnd.ms-excel': '.xls',
# Text Documents
'text/plain': '.txt',
'text/csv': '.csv',
'text/markdown': '.md',
'text/html': '.html',
'text/xml': '.xml',
'application/json': '.json',
'application/rtf': '.rtf',
# PDF Documents
'application/pdf': '.pdf'
}
# Define export MIME types for Google Docs formats
self.google_docs_export_types = {
'application/vnd.google-apps.document': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
}
async def process_documents(
self,
vector_store: ChromaVectorStore
) -> Dict[str, Any]:
"""
Process all documents in the specified Drive folder
Args:
vector_store (ChromaVectorStore): Vector store instance
Returns:
Dict[str, Any]: Processing results
"""
try:
# Get documents from folder
files = self.google_drive_service.get_folder_contents(self.folder_id)
processed_files = []
skipped_files = []
errors = []
for file in files:
result = await self._process_single_file(file, vector_store)
if result['status'] == 'processed':
processed_files.append(result['data'])
elif result['status'] == 'skipped':
skipped_files.append(result['data'])
else: # status == 'error'
errors.append(result['data'])
# Clean up temporary directory if empty
self._cleanup_temp_dir()
return {
"status": "completed",
"processed_files": {
"count": len(processed_files),
"details": processed_files
},
"skipped_files": {
"count": len(skipped_files),
"details": skipped_files
},
"errors": {
"count": len(errors),
"details": errors
}
}
except Exception as e:
logger.error(f"Error processing Drive documents: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Failed to process drive documents: {str(e)}"
)
async def _process_single_file(
self,
file: Dict[str, Any],
vector_store: ChromaVectorStore
) -> Dict[str, Any]:
"""Process a single Drive file"""
mime_type = file.get('mimeType', '')
# Skip if mime type not supported
if mime_type not in self.supported_mime_types:
return {
'status': 'skipped',
'data': {
'name': file['name'],
'reason': f'Unsupported mime type: {mime_type}'
}
}
try:
document_id = file['id']
modified_time = file.get('modifiedTime', 'N/A') # Get last modified time
# Check if document should be processed
if self.save_document(document_id, vector_store, modified_time):
# Download and process file
temp_file_path = await self._download_and_save_file(
file['id'],
mime_type
)
try:
# Process document
processed_doc = await self.doc_processor.process_document(
str(temp_file_path)
)
# Add to vector store
self._add_to_vector_store(
processed_doc['chunks'],
file,
mime_type,
vector_store
)
return {
'status': 'processed',
'data': {
'name': file['name'],
'id': file['id'],
'chunks_processed': len(processed_doc['chunks'])
}
}
finally:
# Clean up temporary file
if temp_file_path.exists():
temp_file_path.unlink()
else:
# Return skipped status if document already exists and is up to date
return {
'status': 'skipped',
'data': {
'name': file['name'],
'reason': 'Document already exists in the memory.'
}
}
except Exception as e:
logger.error(f"Error processing file {file['name']}: {str(e)}")
return {
'status': 'error',
'data': {
'file_name': file['name'],
'error': str(e)
}
}
except Exception as e:
logger.error(f"Error processing file {file['name']}: {str(e)}")
return {
'status': 'error',
'data': {
'file_name': file['name'],
'error': str(e)
}
}
async def _download_and_save_file(
self,
file_id: str,
mime_type: str
) -> Path:
"""Download and save file to temporary location"""
extension = self.supported_mime_types[mime_type]
temp_file_path = self.temp_dir / f"{file_id}{extension}"
if mime_type in self.google_docs_export_types:
# Download Google Doc in the specified export format
content = self.google_drive_service.export_file(
file_id,
self.google_docs_export_types[mime_type]
)
else:
# Download regular file
content = self.google_drive_service.download_file(file_id)
with open(temp_file_path, 'wb') as f:
if isinstance(content, str):
f.write(content.encode('utf-8'))
else:
f.write(content)
return temp_file_path
def _add_to_vector_store(
self,
chunks: List[str],
file: Dict[str, Any],
mime_type: str,
vector_store: ChromaVectorStore
) -> None:
"""Add processed chunks to vector store"""
chunk_metadatas = []
chunk_ids = []
# document_id = file['id']
modified_time = file.get('modifiedTime', 'N/A') # Get last modified time
#self.delete_updated_document(document_id, vector_store, modified_time)
for i, chunk in enumerate(chunks):
chunk_id = f"{file['id']}-chunk-{i}"
chunk_ids.append(chunk_id)
chunk_metadatas.append({
"source": file['name'],
"document_id": file['id'],
"chunk_index": i,
"mime_type": mime_type,
"modified_time": modified_time,
"total_chunks": len(chunks),
"file_type": self.supported_mime_types[mime_type],
"is_google_doc": mime_type.startswith('application/vnd.google-apps')
})
vector_store.add_documents(
documents=chunks,
metadatas=chunk_metadatas,
ids=chunk_ids
)
def save_document(self, document_id: str, vector_store: ChromaVectorStore, modified_date: str) -> bool:
"""
Deletes all chunks of a document if the modified_time does not match the given modified_date.
Args:
document_id (str): The ID of the document.
vector_store (ChromaVectorStore): The Chroma vector store instance.
modified_date (str): The expected modification date.
"""
try:
# Retrieve all chunks for the given document_id
chunks = vector_store.get_document_chunks(document_id)
if not chunks:
logging.warning(f"No chunks found for document_id: {document_id}. Nothing to delete.")
return True
# Check the modified_time of the first chunk
first_chunk_metadata = chunks[0].get("metadata", {})
if first_chunk_metadata.get("modified_time") != modified_date:
# If modified_time doesn't match, delete all chunks
vector_store.delete_document(document_id)
logging.info(f"Deleted all chunks for document_id: {document_id} due to modified_time mismatch.")
return True
else:
logging.info(f"No deletion needed for document_id: {document_id}, modified_time is unchanged.")
return False
except Exception as e:
logging.error(f"Error while deleting chunks for document_id {document_id}: {str(e)}")
return True
def _cleanup_temp_dir(self) -> None:
"""Clean up temporary directory if empty"""
if self.temp_dir.exists() and not any(self.temp_dir.iterdir()):
self.temp_dir.rmdir() |