File size: 8,113 Bytes
b953016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from typing import Dict, List, Any, Optional
import pandas as pd
import numpy as np
from pathlib import Path
import json

class EnhancedExcelProcessor:
    def __init__(self):
        """Initialize the enhanced Excel processor"""
        self.sheet_summaries = {}
        self.relationships = {}
        self.sheet_metadata = {}
        
    def process_excel(self, file_path: Path) -> str:
        """
        Process Excel file with enhanced multi-sheet handling
        
        Args:
            file_path (Path): Path to Excel file
            
        Returns:
            str: Structured text representation of Excel content
        """
        # Read all sheets
        excel_file = pd.ExcelFile(file_path)
        sheets_data = {}
        
        for sheet_name in excel_file.sheet_names:
            df = pd.read_excel(excel_file, sheet_name=sheet_name)
            sheets_data[sheet_name] = df
            
            # Generate sheet summary
            self.sheet_summaries[sheet_name] = self._generate_sheet_summary(df)
            
            # Extract sheet metadata
            self.sheet_metadata[sheet_name] = {
                'columns': list(df.columns),
                'rows': len(df),
                'numeric_columns': df.select_dtypes(include=[np.number]).columns.tolist(),
                'date_columns': df.select_dtypes(include=['datetime64']).columns.tolist(),
                'categorical_columns': df.select_dtypes(include=['object']).columns.tolist()
            }
        
        # Detect relationships between sheets
        self.relationships = self._detect_relationships(sheets_data)
        
        # Generate structured text representation
        return self._generate_structured_text(sheets_data)
    
    def _generate_sheet_summary(self, df: pd.DataFrame) -> Dict:
        """Generate statistical summary for a sheet"""
        summary = {
            'total_rows': len(df),
            'total_columns': len(df.columns),
            'column_types': {},
            'numeric_summaries': {},
            'categorical_summaries': {},
            'null_counts': df.isnull().sum().to_dict()
        }
        
        # Process numeric columns
        numeric_cols = df.select_dtypes(include=[np.number]).columns
        for col in numeric_cols:
            summary['numeric_summaries'][col] = {
                'mean': float(df[col].mean()),
                'median': float(df[col].median()),
                'std': float(df[col].std()),
                'min': float(df[col].min()),
                'max': float(df[col].max())
            }
            summary['column_types'][col] = 'numeric'
        
        # Process categorical columns
        categorical_cols = df.select_dtypes(include=['object']).columns
        for col in categorical_cols:
            value_counts = df[col].value_counts()
            summary['categorical_summaries'][col] = {
                'unique_values': int(len(value_counts)),
                'top_values': value_counts.head(5).to_dict()
            }
            summary['column_types'][col] = 'categorical'
        
        return summary
    
    def _detect_relationships(self, sheets_data: Dict[str, pd.DataFrame]) -> Dict:
        """Detect potential relationships between sheets"""
        relationships = {}
        sheet_names = list(sheets_data.keys())
        
        for i, sheet1 in enumerate(sheet_names):
            for sheet2 in sheet_names[i+1:]:
                common_cols = set(sheets_data[sheet1].columns) & set(sheets_data[sheet2].columns)
                if common_cols:
                    relationships[f"{sheet1}__{sheet2}"] = {
                        'common_columns': list(common_cols),
                        'type': 'potential_join'
                    }
                    
                # Check for foreign key relationships
                for col1 in sheets_data[sheet1].columns:
                    for col2 in sheets_data[sheet2].columns:
                        if (col1.lower().endswith('_id') or col2.lower().endswith('_id')):
                            unique_vals1 = set(sheets_data[sheet1][col1].dropna())
                            unique_vals2 = set(sheets_data[sheet2][col2].dropna())
                            if unique_vals1 & unique_vals2:
                                relationships[f"{sheet1}__{sheet2}__{col1}__{col2}"] = {
                                    'type': 'foreign_key',
                                    'columns': [col1, col2]
                                }
        
        return relationships
    
    def _generate_structured_text(self, sheets_data: Dict[str, pd.DataFrame]) -> str:
        """Generate structured text representation of Excel content"""
        output_parts = []
        
        # Overall summary
        output_parts.append(f"Excel File Overview:")
        output_parts.append(f"Total Sheets: {len(sheets_data)}")
        output_parts.append("")
        
        # Sheet details
        for sheet_name, df in sheets_data.items():
            output_parts.append(f"Sheet: {sheet_name}")
            output_parts.append("=" * (len(sheet_name) + 7))
            
            metadata = self.sheet_metadata[sheet_name]
            summary = self.sheet_summaries[sheet_name]
            
            # Basic info
            output_parts.append(f"Rows: {metadata['rows']}")
            output_parts.append(f"Columns: {', '.join(metadata['columns'])}")
            output_parts.append("")
            
            # Column summaries
            if metadata['numeric_columns']:
                output_parts.append("Numeric Columns Summary:")
                for col in metadata['numeric_columns']:
                    stats = summary['numeric_summaries'][col]
                    output_parts.append(f"  {col}:")
                    output_parts.append(f"    Range: {stats['min']} to {stats['max']}")
                    output_parts.append(f"    Average: {stats['mean']:.2f}")
                output_parts.append("")
            
            if metadata['categorical_columns']:
                output_parts.append("Categorical Columns Summary:")
                for col in metadata['categorical_columns']:
                    cats = summary['categorical_summaries'][col]
                    output_parts.append(f"  {col}:")
                    output_parts.append(f"    Unique Values: {cats['unique_values']}")
                    if cats['top_values']:
                        output_parts.append("    Top Values: " + 
                                         ", ".join(f"{k} ({v})" for k, v in 
                                                 list(cats['top_values'].items())[:3]))
                output_parts.append("")
            
            # Sample data
            output_parts.append("Sample Data:")
            output_parts.append(df.head(3).to_string())
            output_parts.append("\n")
        
        # Relationships
        if self.relationships:
            output_parts.append("Sheet Relationships:")
            for rel_key, rel_info in self.relationships.items():
                if rel_info['type'] == 'potential_join':
                    sheets = rel_key.split('__')
                    output_parts.append(f"- {sheets[0]} and {sheets[1]} share columns: " +
                                     f"{', '.join(rel_info['common_columns'])}")
                elif rel_info['type'] == 'foreign_key':
                    parts = rel_key.split('__')
                    output_parts.append(f"- Potential foreign key relationship between " +
                                     f"{parts[0]}.{parts[2]} and {parts[1]}.{parts[3]}")
        
        return "\n".join(output_parts)
    
    def get_sheet_summary(self, sheet_name: str) -> Optional[Dict]:
        """Get summary for a specific sheet"""
        return self.sheet_summaries.get(sheet_name)
    
    def get_relationships(self) -> Dict:
        """Get detected relationships between sheets"""
        return self.relationships
    
    def get_metadata(self) -> Dict:
        """Get complete metadata for all sheets"""
        return self.sheet_metadata