File size: 6,545 Bytes
e9d730a
 
 
 
d161383
 
e9d730a
d161383
 
 
 
 
 
e9d730a
 
d161383
 
 
 
 
e9d730a
d161383
e9d730a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d161383
 
e9d730a
 
d161383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d730a
d161383
 
 
 
 
 
 
e9d730a
 
d161383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d730a
d161383
e9d730a
d161383
 
e9d730a
d161383
e9d730a
d161383
 
e9d730a
d161383
 
 
 
 
 
 
 
 
 
 
 
e9d730a
d161383
 
 
 
e9d730a
 
d161383
 
 
 
 
 
 
 
 
 
e9d730a
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# src/implementations/document_service.py
from pathlib import Path
import shutil
import os
from uuid import uuid4
from typing import List, Tuple, Dict
from fastapi import UploadFile, BackgroundTasks

from src.vectorstores.chroma_vectorstore import ChromaVectorStore
from src.utils.document_processor import DocumentProcessor
from src.models import DocumentResponse, DocumentInfo, BatchUploadResponse
from src.utils.logger import logger
from src.db.mongodb_store import MongoDBStore

class DocumentService:
    def __init__(
        self, 
        doc_processor: DocumentProcessor,
        mongodb: MongoDBStore
    ):
        self.doc_processor = doc_processor
        self.mongodb = mongodb
        self.upload_dir = Path("temp_uploads")
        self.upload_dir.mkdir(exist_ok=True)

    async def process_documents(
        self,
        files: List[UploadFile],
        vector_store: ChromaVectorStore,
        background_tasks: BackgroundTasks
    ) -> BatchUploadResponse:
        """Process multiple document uploads"""
        processed_files, failed_files = await self._handle_file_uploads(
            files, 
            vector_store, 
            background_tasks
        )

        return BatchUploadResponse(
            message=f"Processed {len(processed_files)} documents with {len(failed_files)} failures",
            processed_files=processed_files,
            failed_files=failed_files
        )

    async def _handle_file_uploads(
        self,
        files: List[UploadFile],
        vector_store: ChromaVectorStore,
        background_tasks: BackgroundTasks
    ) -> Tuple[List[DocumentResponse], List[dict]]:
        """Handle individual file uploads and processing"""
        processed_files = []
        failed_files = []

        for file in files:
            try:
                if not self._is_supported_format(file.filename):
                    failed_files.append(self._create_failed_file_entry(
                        file.filename, 
                        "Unsupported file format"
                    ))
                    continue

                document_response = await self._process_single_file(
                    file, 
                    vector_store, 
                    background_tasks
                )
                processed_files.append(document_response)

            except Exception as e:
                logger.error(f"Error processing file {file.filename}: {str(e)}")
                failed_files.append(self._create_failed_file_entry(
                    file.filename, 
                    str(e)
                ))

        return processed_files, failed_files

    async def _process_single_file(
        self,
        file: UploadFile,
        vector_store: ChromaVectorStore,
        background_tasks: BackgroundTasks
    ) -> DocumentResponse:
        """Process a single file upload"""
        # Generate UUID for document
        document_id = str(uuid4())
        temp_path = self.upload_dir / f"{document_id}_{file.filename}"
        
        try:
            # Save file temporarily
            with open(temp_path, "wb") as buffer:
                shutil.copyfileobj(file.file, buffer)

            # Process the document to get content and metadata
            processed_doc = await self.doc_processor.process_document(temp_path)
            content = processed_doc['content']
            
            # First, store in MongoDB
            await self.mongodb.store_document(
                document_id=document_id,
                filename=file.filename,
                content=content,
                content_type=file.content_type,
                file_size=os.path.getsize(temp_path)
            )

            # Then process for vector store in background
            background_tasks.add_task(
                self._process_for_vector_store,
                processed_doc['chunks'],  # Use the chunks from processed document
                vector_store,
                document_id,
                file.filename
            )

            return DocumentResponse(
                message="Document uploaded successfully",
                document_id=document_id,
                status="processing",
                document_info=DocumentInfo(
                    original_filename=file.filename,
                    size=os.path.getsize(temp_path),
                    content_type=file.content_type
                )
            )
        finally:
            # Clean up temporary file
            if temp_path.exists():
                temp_path.unlink()

    async def _process_for_vector_store(
        self,
        chunks: List[str],  # Now accepting pre-processed chunks
        vector_store: ChromaVectorStore,
        document_id: str,
        filename: str
    ):
        """Process document content for vector store"""
        try:
            # Generate chunk IDs using document_id
            chunk_ids = [f"{document_id}-chunk-{i}" for i in range(len(chunks))]
            
            # Get embeddings
            embeddings = vector_store.embedding_function(chunks)
            
            # Prepare metadata for each chunk
            metadatas = [{
                'document_id': document_id,  # MongoDB document ID
                'source_file': filename,
                'chunk_index': i,
                'total_chunks': len(chunks)
            } for i in range(len(chunks))]
            
            # Store in vector store
            vector_store.add_documents(
                documents=chunks,
                embeddings=embeddings,
                metadatas=metadatas,
                ids=chunk_ids
            )
            
            logger.info(f"Successfully processed document {filename} (ID: {document_id}) into {len(chunks)} chunks")
            
        except Exception as e:
            logger.error(f"Error processing document {filename} (ID: {document_id}) for vector store: {str(e)}")
            raise

    def _is_supported_format(self, filename: str) -> bool:
        """Check if file format is supported"""
        return any(filename.lower().endswith(ext) 
                  for ext in self.doc_processor.supported_formats)

    def _create_failed_file_entry(self, filename: str, error: str) -> dict:
        """Create a failed file entry"""
        return {
            "filename": filename,
            "error": error
        }

    def cleanup(self):
        """Clean up upload directory"""
        if self.upload_dir.exists() and not any(self.upload_dir.iterdir()):
            self.upload_dir.rmdir()