File size: 7,386 Bytes
640b1c8
e9d730a
 
 
e87abff
 
640b1c8
e87abff
e9d730a
d161383
e9d730a
 
 
 
 
 
 
 
 
d161383
e9d730a
 
 
 
 
640b1c8
 
 
 
d161383
 
 
e87abff
 
 
 
 
 
 
d161383
e87abff
 
 
 
 
 
 
 
 
e9d730a
 
 
 
e87abff
e9d730a
e87abff
 
 
 
e9d730a
e87abff
d161383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
 
 
 
 
640b1c8
 
e87abff
 
640b1c8
 
 
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
e9d730a
 
 
 
 
 
 
 
640b1c8
 
 
e87abff
 
 
 
 
 
640b1c8
e87abff
640b1c8
e87abff
 
 
 
 
 
e9d730a
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
e9d730a
e87abff
e9d730a
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d730a
 
 
 
 
 
 
 
e87abff
 
 
 
 
640b1c8
 
 
 
e87abff
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# src/main.py
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse
from typing import List
import uuid
from datetime import datetime

# Import custom modules
from src.agents.rag_agent import RAGAgent
from src.models.document import AllDocumentsResponse, StoredDocument
from src.utils.document_processor import DocumentProcessor
from src.utils.conversation_summarizer import ConversationSummarizer
from src.utils.logger import logger
from src.utils.llm_utils import get_llm_instance, get_vector_store
from src.db.mongodb_store import MongoDBStore
from src.implementations.document_service import DocumentService
from src.models import (
    ChatRequest, 
    ChatResponse, 
    DocumentResponse,
    BatchUploadResponse,
    SummarizeRequest,
    SummaryResponse,
    FeedbackRequest
)
from config.config import settings

app = FastAPI(title="RAG Chatbot API")

# Initialize MongoDB
mongodb = MongoDBStore(settings.MONGODB_URI)

# Initialize core components
doc_processor = DocumentProcessor(
    chunk_size=1000,
    chunk_overlap=200,
    max_file_size=10 * 1024 * 1024
)
summarizer = ConversationSummarizer()
document_service = DocumentService(doc_processor, mongodb)

@app.post("/documents/upload", response_model=BatchUploadResponse)
async def upload_documents(
    files: List[UploadFile] = File(...),
    background_tasks: BackgroundTasks = BackgroundTasks()
):
    """Upload and process multiple documents"""
    try:
        vector_store, _ = await get_vector_store()
        response = await document_service.process_documents(
            files, 
            vector_store, 
            background_tasks
        )
        return response
    except Exception as e:
        logger.error(f"Error in document upload: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))
    finally:
        document_service.cleanup()

@app.get("/documents", response_model=AllDocumentsResponse)
async def get_all_documents(include_embeddings: bool = False):
    """
    Get all documents stored in the system
    
    Args:
        include_embeddings (bool): Whether to include embeddings in the response
    """
    try:
        vector_store, _ = await get_vector_store()
        documents = vector_store.get_all_documents(include_embeddings=include_embeddings)
        
        return AllDocumentsResponse(
            total_documents=len(documents),
            documents=[
                StoredDocument(
                    id=doc['id'],
                    text=doc['text'],
                    embedding=doc.get('embedding'),
                    metadata=doc.get('metadata')
                ) for doc in documents
            ]
        )
    except Exception as e:
        logger.error(f"Error retrieving documents: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/documentchunks/{document_id}")
async def get_document_chunks(document_id: str):
    """Get all chunks for a specific document"""
    try:
        vector_store, _ = await get_vector_store()
        chunks = vector_store.get_document_chunks(document_id)
        
        if not chunks:
            raise HTTPException(status_code=404, detail="Document not found")
            
        return {
            "document_id": document_id,
            "total_chunks": len(chunks),
            "chunks": chunks
        }
    except Exception as e:
        logger.error(f"Error retrieving document chunks: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))
    
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(
    request: ChatRequest,
    background_tasks: BackgroundTasks
):
    """Chat endpoint with RAG support"""
    try:
        vector_store, embedding_model = await get_vector_store()
        llm = get_llm_instance(request.llm_provider)
        
        rag_agent = RAGAgent(
            llm=llm,
            embedding=embedding_model,
            vector_store=vector_store
        )
        
        if request.stream:
            return StreamingResponse(
                rag_agent.generate_streaming_response(request.query),
                media_type="text/event-stream"
            )
        
        response = await rag_agent.generate_response(
            query=request.query,
            temperature=request.temperature
        )
        
        conversation_id = request.conversation_id or str(uuid.uuid4())
        
        # Store chat history in MongoDB
        await mongodb.store_message(
            conversation_id=conversation_id,
            query=request.query,
            response=response.response,
            context=response.context_docs,
            sources=response.sources,
            llm_provider=request.llm_provider
        )
        
        return ChatResponse(
            response=response.response,
            context=response.context_docs,
            sources=response.sources,
            conversation_id=conversation_id,
            timestamp=datetime.now(),
            relevant_doc_scores=response.scores if hasattr(response, 'scores') else None
        )
        
    except Exception as e:
        logger.error(f"Error in chat endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/chat/history/{conversation_id}")
async def get_conversation_history(conversation_id: str):
    """Get complete conversation history"""
    history = await mongodb.get_conversation_history(conversation_id)
    
    if not history:
        raise HTTPException(status_code=404, detail="Conversation not found")
        
    return {
        "conversation_id": conversation_id,
        "messages": history
    }

@app.post("/chat/summarize", response_model=SummaryResponse)
async def summarize_conversation(request: SummarizeRequest):
    """Generate a summary of a conversation"""
    try:
        messages = await mongodb.get_messages_for_summary(request.conversation_id)
        
        if not messages:
            raise HTTPException(status_code=404, detail="Conversation not found")
        
        summary = await summarizer.summarize_conversation(
            messages,
            include_metadata=request.include_metadata
        )
        
        return SummaryResponse(**summary)
        
    except Exception as e:
        logger.error(f"Error generating summary: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/chat/feedback/{conversation_id}")
async def submit_feedback(
    conversation_id: str,
    feedback_request: FeedbackRequest
):
    """Submit feedback for a conversation"""
    try:
        success = await mongodb.update_feedback(
            conversation_id=conversation_id,
            feedback=feedback_request.feedback,
            rating=feedback_request.rating
        )
        
        if not success:
            raise HTTPException(status_code=404, detail="Conversation not found")
            
        return {"status": "Feedback submitted successfully"}
        
    except Exception as e:
        logger.error(f"Error submitting feedback: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    return {"status": "healthy"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)