File size: 7,828 Bytes
640b1c8
 
d161383
 
 
640b1c8
 
 
 
 
 
 
d161383
 
 
640b1c8
 
 
 
 
 
 
d161383
 
640b1c8
d161383
 
 
 
 
 
 
 
 
 
 
 
 
 
640b1c8
 
 
 
d161383
 
 
640b1c8
 
 
 
 
 
d161383
 
 
640b1c8
d161383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640b1c8
 
 
 
d161383
 
640b1c8
 
 
 
 
 
 
d161383
640b1c8
 
 
 
d161383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# src/vectorstores/chroma_vectorstore.py
import chromadb
from typing import List, Callable, Any, Dict, Optional
from chromadb.config import Settings
import logging

from .base_vectorstore import BaseVectorStore

class ChromaVectorStore(BaseVectorStore):
    def __init__(
        self, 
        embedding_function: Callable[[List[str]], List[List[float]]], 
        persist_directory: str = './chroma_db',
        collection_name: str = "documents",
        client_settings: Optional[Dict[str, Any]] = None
    ):
        """
        Initialize Chroma Vector Store
        
        Args:
            embedding_function (Callable): Function to generate embeddings
            persist_directory (str): Directory to persist the vector store
            collection_name (str): Name of the collection to use
            client_settings (Optional[Dict[str, Any]]): Additional settings for ChromaDB client
        """
        try:
            settings = Settings(
                persist_directory=persist_directory,
                **(client_settings or {})
            )
            self.client = chromadb.PersistentClient(settings=settings)
            self.collection = self.client.get_or_create_collection(
                name=collection_name,
                metadata={"hnsw:space": "cosine"}  # Using cosine similarity by default
            )
            self.embedding_function = embedding_function
        except Exception as e:
            logging.error(f"Error initializing ChromaDB: {str(e)}")
            raise
    
    def add_documents(
        self, 
        documents: List[str], 
        embeddings: Optional[List[List[float]]] = None,
        metadatas: Optional[List[Dict[str, Any]]] = None,
        ids: Optional[List[str]] = None
    ) -> None:
        """
        Add documents to the vector store
        
        Args:
            documents (List[str]): List of document texts
            embeddings (Optional[List[List[float]]]): Pre-computed embeddings
            metadatas (Optional[List[Dict[str, Any]]]): Metadata for each document
            ids (Optional[List[str]]): Custom IDs for the documents
        """
        try:
            if not documents:
                logging.warning("No documents provided to add_documents")
                return

            if not embeddings:
                embeddings = self.embedding_function(documents)

            if len(documents) != len(embeddings):
                raise ValueError("Number of documents and embeddings must match")
            
            # Use provided IDs or generate them
            doc_ids = ids if ids is not None else [f"doc_{i}" for i in range(len(documents))]
            
            # Prepare add parameters
            add_params = {
                "documents": documents,
                "embeddings": embeddings,
                "ids": doc_ids
            }
            
            # Only include metadatas if provided
            if metadatas is not None:
                if len(metadatas) != len(documents):
                    raise ValueError("Number of documents and metadatas must match")
                add_params["metadatas"] = metadatas
            
            self.collection.add(**add_params)
        except Exception as e:
            logging.error(f"Error adding documents to ChromaDB: {str(e)}")
            raise
    
    def similarity_search(
        self, 
        query_embedding: List[float], 
        top_k: int = 3,
        **kwargs
    ) -> List[str]:
        """
        Perform similarity search
        
        Args:
            query_embedding (List[float]): Embedding of the query
            top_k (int): Number of top similar documents to retrieve
            **kwargs: Additional search parameters
        
        Returns:
            List[str]: List of most similar documents
        """
        try:
            results = self.collection.query(
                query_embeddings=[query_embedding],
                n_results=top_k,
                **kwargs
            )
            
            # Handle the case where no results are found
            if not results or 'documents' not in results:
                return []
                
            return results.get('documents', [[]])[0]
        except Exception as e:
            logging.error(f"Error performing similarity search in ChromaDB: {str(e)}")
            raise
    
    def get_all_documents(
        self,
        include_embeddings: bool = False
    ) -> List[Dict[str, Any]]:
        """
        Retrieve all documents from the vector store
        """
        try:
            include = ["documents", "metadatas"]
            if include_embeddings:
                include.append("embeddings")
                
            results = self.collection.get(
                include=include
            )
            
            if not results or 'documents' not in results:
                return []
            
            documents = []
            for i in range(len(results['documents'])):
                doc = {
                    'id': str(i),  # Generate sequential IDs
                    'text': results['documents'][i],
                }
                
                if include_embeddings and 'embeddings' in results:
                    doc['embedding'] = results['embeddings'][i]
                
                if 'metadatas' in results and results['metadatas'][i]:
                    doc['metadata'] = results['metadatas'][i]
                    
                    # Use document_id from metadata if available
                    if 'document_id' in results['metadatas'][i]:
                        doc['id'] = results['metadatas'][i]['document_id']
                
                documents.append(doc)
            
            return documents
        except Exception as e:
            logging.error(f"Error retrieving documents from ChromaDB: {str(e)}")
            raise
    
    def get_document_chunks(self, document_id: str) -> List[Dict[str, Any]]:
        """Retrieve all chunks for a specific document"""
        try:
            results = self.collection.get(
                where={"document_id": document_id},
                include=["documents", "metadatas"]
            )
            
            if not results or 'documents' not in results:
                return []
            
            chunks = []
            for i in range(len(results['documents'])):
                chunk = {
                    'text': results['documents'][i],
                    'metadata': results['metadatas'][i] if results.get('metadatas') else None
                }
                chunks.append(chunk)
            
            # Sort by chunk_index if available
            chunks.sort(key=lambda x: x.get('metadata', {}).get('chunk_index', 0))
            
            return chunks
        except Exception as e:
            logging.error(f"Error retrieving document chunks: {str(e)}")
            raise

    def delete_document(self, document_id: str) -> None:
        """Delete all chunks associated with a document_id"""
        try:
            # Get all chunks with the given document_id
            results = self.collection.get(
                where={"document_id": document_id},
                include=["metadatas"]
            )
            
            if not results or 'ids' not in results:
                logging.warning(f"No document found with ID: {document_id}")
                return
                
            # Delete all chunks associated with the document
            chunk_ids = [f"{document_id}-chunk-{i}" for i in range(len(results['metadatas']))]
            self.collection.delete(ids=chunk_ids)
            
        except Exception as e:
            logging.error(f"Error deleting document {document_id} from ChromaDB: {str(e)}")
            raise