Spaces:
Running
Running
File size: 9,345 Bytes
e9d730a 4daad35 e9d730a d161383 e9d730a d161383 e9d730a acdfaa9 e9d730a d161383 acdfaa9 d161383 e9d730a d161383 4daad35 acdfaa9 4daad35 acdfaa9 4daad35 e9d730a acdfaa9 e9d730a 4daad35 e9d730a acdfaa9 e9d730a acdfaa9 e9d730a acdfaa9 e9d730a acdfaa9 e9d730a f36ab64 d161383 4daad35 acdfaa9 d161383 f36ab64 4daad35 d161383 f36ab64 acdfaa9 f36ab64 acdfaa9 f36ab64 4daad35 d161383 4daad35 acdfaa9 d161383 e9d730a 4daad35 d161383 4daad35 d161383 e9d730a d161383 4daad35 d161383 acdfaa9 4daad35 acdfaa9 4daad35 acdfaa9 4daad35 d161383 e9d730a 4daad35 e9d730a d161383 e9d730a d161383 e9d730a d161383 acdfaa9 d161383 acdfaa9 d161383 4daad35 d161383 acdfaa9 d161383 e9d730a d161383 e9d730a acdfaa9 d161383 acdfaa9 d161383 acdfaa9 e9d730a 4daad35 acdfaa9 4daad35 acdfaa9 4daad35 acdfaa9 4daad35 e9d730a 4daad35 acdfaa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# src/implementations/document_service.py
from fastapi import HTTPException
from pathlib import Path
import shutil
import os
from uuid import uuid4
from typing import List, Tuple, Dict
from fastapi import UploadFile, BackgroundTasks
from src.vectorstores.chroma_vectorstore import ChromaVectorStore
from src.utils.document_processor import DocumentProcessor
from src.models import DocumentResponse, DocumentInfo, BatchUploadResponse
from src.utils.logger import logger
from src.db.mongodb_store import MongoDBStore
class DocumentService:
def __init__(
self,
doc_processor: DocumentProcessor,
mongodb: MongoDBStore
):
self.doc_processor = doc_processor
self.mongodb = mongodb
self.permanent_dir = Path("uploads")
self.permanent_dir.mkdir(exist_ok=True)
async def check_duplicate_filename(self, filename: str) -> bool:
"""
Check if a file with the same name exists
Args:
filename (str): Original filename to check
Returns:
bool: True if duplicate exists, False otherwise
"""
documents = await self.mongodb.get_all_documents()
return any(doc.get('filename') == filename for doc in documents)
async def process_documents(
self,
files: List[UploadFile],
vector_store: ChromaVectorStore,
background_tasks: BackgroundTasks
) -> BatchUploadResponse:
"""Process multiple document uploads"""
processed_files, failed_files = await self._handle_file_uploads(
files,
vector_store,
background_tasks
)
return BatchUploadResponse(
message=f"Processed {len(processed_files)} documents with {len(failed_files)} failures",
processed_files=processed_files,
failed_files=failed_files
)
async def _handle_file_uploads(
self,
files: List[UploadFile],
vector_store: ChromaVectorStore,
background_tasks: BackgroundTasks
) -> Tuple[List[DocumentResponse], List[dict]]:
"""Handle individual file uploads and processing"""
processed_files = []
failed_files = []
for file in files:
try:
# Check for duplicate filename
if await self.check_duplicate_filename(file.filename):
failed_files.append(self._create_failed_file_entry(
file.filename,
"A document with this name already exists. Please upload another document."
))
continue
if not self._is_supported_format(file.filename):
failed_files.append(self._create_failed_file_entry(
file.filename,
"Unsupported file format"
))
continue
document_response = await self._process_single_file(
file,
vector_store,
background_tasks
)
processed_files.append(document_response)
except Exception as e:
logger.error(
f"Error processing file {file.filename}: {str(e)}")
failed_files.append(self._create_failed_file_entry(
file.filename,
str(e)
))
return processed_files, failed_files
async def _process_single_file(
self,
file: UploadFile,
vector_store: ChromaVectorStore,
background_tasks: BackgroundTasks
) -> DocumentResponse:
"""Process a single file upload with proper handle closure"""
document_id = str(uuid4())
filename = f"{document_id}_{file.filename}"
file_path = self.permanent_dir / filename
url_path = f"/docs/{filename}"
try:
# Save file to permanent location using a context manager
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Close the uploaded file explicitly
await file.close()
# Process document with proper cleanup for Excel files
try:
processed_doc = await self.doc_processor.process_document(file_path)
# For Excel files, ensure pandas closes the file
if file_path.suffix.lower() in ['.xlsx', '.xls']:
import gc
gc.collect() # Help cleanup any lingering file handles
except Exception as proc_error:
logger.error(f"Error processing document: {str(proc_error)}")
raise
# Store in MongoDB with url_path
await self.mongodb.store_document(
document_id=document_id,
filename=file.filename,
content_type=file.content_type,
file_size=os.path.getsize(file_path),
url_path=url_path,
source="user_upload"
)
# Process for vector store in background
background_tasks.add_task(
self._process_for_vector_store,
processed_doc['chunks'],
vector_store,
document_id,
file.filename
)
return DocumentResponse(
message="Document uploaded successfully",
document_id=document_id,
status="processing",
document_info=DocumentInfo(
original_filename=file.filename,
size=os.path.getsize(file_path),
content_type=file.content_type,
url_path=url_path
)
)
except Exception as e:
# Clean up file if it was created
if file_path.exists():
try:
file_path.unlink()
except Exception as cleanup_error:
logger.error(
f"Error cleaning up file {file_path}: {str(cleanup_error)}")
# Clean up from MongoDB if document was created
try:
await self.mongodb.delete_document(document_id)
except Exception as db_cleanup_error:
logger.error(
f"Error cleaning up MongoDB document {document_id}: {str(db_cleanup_error)}")
logger.error(f"Error processing file {file.filename}: {str(e)}")
raise
async def _process_for_vector_store(
self,
chunks: List[str],
vector_store: ChromaVectorStore,
document_id: str,
filename: str
):
"""Process document content for vector store"""
try:
# Generate chunk IDs using document_id
chunk_ids = [
f"{document_id}-chunk-{i}" for i in range(len(chunks))]
# Get embeddings
embeddings = vector_store.embedding_function(chunks)
# Prepare metadata for each chunk
metadatas = [{
'document_id': document_id,
'source_file': filename,
'chunk_index': i,
'total_chunks': len(chunks)
} for i in range(len(chunks))]
# Store in vector store
vector_store.add_documents(
documents=chunks,
embeddings=embeddings,
metadatas=metadatas,
ids=chunk_ids
)
logger.info(
f"Successfully processed document {filename} (ID: {document_id}) into {len(chunks)} chunks")
except Exception as e:
logger.error(
f"Error processing document {filename} (ID: {document_id}) for vector store: {str(e)}")
raise
def _is_supported_format(self, filename: str) -> bool:
"""Check if file format is supported"""
return any(filename.lower().endswith(ext)
for ext in self.doc_processor.supported_formats)
def _create_failed_file_entry(self, filename: str, error: str) -> dict:
"""Create a failed file entry"""
return {
"filename": filename,
"error": error
}
async def delete_document(self, document_id: str) -> bool:
"""Delete document from storage and MongoDB"""
try:
# Get document details from MongoDB
doc = await self.mongodb.get_document(document_id)
if doc:
# Get filename from url_path
filename = doc['url_path'].split('/')[-1]
file_path = self.permanent_dir / filename
# Delete physical file if it exists
if file_path.exists():
file_path.unlink()
# Delete from MongoDB
return await self.mongodb.delete_document(document_id)
return False
except Exception as e:
logger.error(f"Error deleting document: {str(e)}")
raise
def cleanup(self):
"""Clean up permanent directory if empty"""
if self.permanent_dir.exists() and not any(self.permanent_dir.iterdir()):
self.permanent_dir.rmdir()
|