File size: 9,130 Bytes
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# src/utils/document_processor.py
from typing import List, Dict, Optional, Union
import PyPDF2
import docx
import pandas as pd
import json
from pathlib import Path
import hashlib
import magic  # python-magic library for file type detection
from bs4 import BeautifulSoup
import requests
import csv
from datetime import datetime
import threading
from queue import Queue
import tiktoken
from langchain.text_splitter import RecursiveCharacterTextSplitter

class DocumentProcessor:
    def __init__(
        self,
        chunk_size: int = 1000,
        chunk_overlap: int = 200,
        max_file_size: int = 10 * 1024 * 1024,  # 10MB
        supported_formats: Optional[List[str]] = None
    ):
        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap
        self.max_file_size = max_file_size
        self.supported_formats = supported_formats or [
            '.txt', '.pdf', '.docx', '.csv', '.json', 
            '.html', '.md', '.xml', '.rtf'
        ]
        self.processing_queue = Queue()
        self.processed_docs = {}
        self._initialize_text_splitter()

    def _initialize_text_splitter(self):
        """Initialize the text splitter with custom settings"""
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=self.chunk_size,
            chunk_overlap=self.chunk_overlap,
            length_function=len,
            separators=["\n\n", "\n", " ", ""]
        )

    async def process_document(
        self,
        file_path: Union[str, Path],
        metadata: Optional[Dict] = None
    ) -> Dict:
        """
        Process a document with metadata and content extraction
        """
        file_path = Path(file_path)
        
        # Basic validation
        if not self._validate_file(file_path):
            raise ValueError(f"Invalid file: {file_path}")

        # Extract content based on file type
        content = self._extract_content(file_path)
        
        # Generate document metadata
        doc_metadata = self._generate_metadata(file_path, content, metadata)
        
        # Split content into chunks
        chunks = self.text_splitter.split_text(content)
        
        # Calculate embeddings chunk hashes
        chunk_hashes = [self._calculate_hash(chunk) for chunk in chunks]
        
        return {
            'content': content,
            'chunks': chunks,
            'chunk_hashes': chunk_hashes,
            'metadata': doc_metadata,
            'statistics': self._generate_statistics(content, chunks)
        }

    def _validate_file(self, file_path: Path) -> bool:
        """
        Validate file type, size, and content
        """
        if not file_path.exists():
            raise FileNotFoundError(f"File not found: {file_path}")
            
        if file_path.suffix.lower() not in self.supported_formats:
            raise ValueError(f"Unsupported file format: {file_path.suffix}")
            
        if file_path.stat().st_size > self.max_file_size:
            raise ValueError(f"File too large: {file_path}")
            
        # Check if file is not empty
        if file_path.stat().st_size == 0:
            raise ValueError(f"Empty file: {file_path}")
            
        return True

    def _extract_content(self, file_path: Path) -> str:
        """
        Extract content from different file formats
        """
        suffix = file_path.suffix.lower()
        
        try:
            if suffix == '.pdf':
                return self._extract_pdf(file_path)
            elif suffix == '.docx':
                return self._extract_docx(file_path)
            elif suffix == '.csv':
                return self._extract_csv(file_path)
            elif suffix == '.json':
                return self._extract_json(file_path)
            elif suffix == '.html':
                return self._extract_html(file_path)
            elif suffix == '.txt':
                return file_path.read_text(encoding='utf-8')
            else:
                raise ValueError(f"Unsupported format: {suffix}")
        except Exception as e:
            raise Exception(f"Error extracting content from {file_path}: {str(e)}")

    def _extract_pdf(self, file_path: Path) -> str:
        """Extract text from PDF with advanced features"""
        text = ""
        with open(file_path, 'rb') as file:
            reader = PyPDF2.PdfReader(file)
            metadata = reader.metadata
            
            for page in reader.pages:
                text += page.extract_text() + "\n\n"
                
                # Extract images if available
                if '/XObject' in page['/Resources']:
                    for obj in page['/Resources']['/XObject'].get_object():
                        if page['/Resources']['/XObject'][obj]['/Subtype'] == '/Image':
                            # Process images if needed
                            pass
                            
        return text.strip()

    def _extract_docx(self, file_path: Path) -> str:
        """Extract text from DOCX with formatting"""
        doc = docx.Document(file_path)
        full_text = []
        
        for para in doc.paragraphs:
            full_text.append(para.text)
            
        # Extract tables if present
        for table in doc.tables:
            for row in table.rows:
                row_text = [cell.text for cell in row.cells]
                full_text.append(" | ".join(row_text))
                
        return "\n\n".join(full_text)

    def _extract_csv(self, file_path: Path) -> str:
        """Convert CSV to structured text"""
        df = pd.read_csv(file_path)
        return df.to_string()

    def _extract_json(self, file_path: Path) -> str:
        """Convert JSON to readable text"""
        with open(file_path) as f:
            data = json.load(f)
        return json.dumps(data, indent=2)

    def _extract_html(self, file_path: Path) -> str:
        """Extract text from HTML with structure preservation"""
        with open(file_path) as f:
            soup = BeautifulSoup(f, 'html.parser')
            
        # Remove script and style elements
        for script in soup(["script", "style"]):
            script.decompose()
            
        text = soup.get_text(separator='\n')
        lines = [line.strip() for line in text.splitlines() if line.strip()]
        return "\n\n".join(lines)

    def _generate_metadata(
        self,
        file_path: Path,
        content: str,
        additional_metadata: Optional[Dict] = None
    ) -> Dict:
        """Generate comprehensive metadata"""
        file_stat = file_path.stat()
        
        metadata = {
            'filename': file_path.name,
            'file_type': file_path.suffix,
            'file_size': file_stat.st_size,
            'created_at': datetime.fromtimestamp(file_stat.st_ctime),
            'modified_at': datetime.fromtimestamp(file_stat.st_mtime),
            'content_hash': self._calculate_hash(content),
            'mime_type': magic.from_file(str(file_path), mime=True),
            'word_count': len(content.split()),
            'character_count': len(content),
            'processing_timestamp': datetime.now().isoformat()
        }
        
        if additional_metadata:
            metadata.update(additional_metadata)
            
        return metadata

    def _generate_statistics(self, content: str, chunks: List[str]) -> Dict:
        """Generate document statistics"""
        return {
            'total_chunks': len(chunks),
            'average_chunk_size': sum(len(chunk) for chunk in chunks) / len(chunks),
            'token_estimate': len(content.split()),
            'unique_words': len(set(content.lower().split())),
            'sentences': len([s for s in content.split('.') if s.strip()]),
        }

    def _calculate_hash(self, text: str) -> str:
        """Calculate SHA-256 hash of text"""
        return hashlib.sha256(text.encode()).hexdigest()

    async def batch_process(
        self,
        file_paths: List[Union[str, Path]],
        parallel: bool = True
    ) -> Dict[str, Dict]:
        """
        Process multiple documents in parallel
        """
        results = {}
        
        if parallel:
            threads = []
            for file_path in file_paths:
                thread = threading.Thread(
                    target=self._process_and_store,
                    args=(file_path, results)
                )
                threads.append(thread)
                thread.start()
                
            for thread in threads:
                thread.join()
        else:
            for file_path in file_paths:
                await self._process_and_store(file_path, results)
                
        return results

    async def _process_and_store(
        self,
        file_path: Union[str, Path],
        results: Dict
    ):
        """Process a single document and store results"""
        try:
            result = await self.process_document(file_path)
            results[str(file_path)] = result
        except Exception as e:
            results[str(file_path)] = {'error': str(e)}