Spaces:
Running
Running
File size: 10,663 Bytes
aee2bfd 415595f f36ab64 415595f aee2bfd 415595f f36ab64 aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f f36ab64 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f f36ab64 415595f f36ab64 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd 415595f aee2bfd f36ab64 415595f f36ab64 415595f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# src/agents/system_instructions_rag.py
from typing import List, Dict, Optional
from src.agents.rag_agent import RAGResponse
from src.utils.logger import logger
from src.agents.rag_agent import RAGAgent
class SystemInstructionsRAGAgent(RAGAgent):
"""RAG Agent with enhanced system instructions for specific use cases"""
async def generate_response(
self,
query: str,
conversation_id: Optional[str] = None,
temperature: float = 0.7,
max_tokens: Optional[int] = None,
context_docs: Optional[List[str]] = None
) -> RAGResponse:
"""Generate response with specific handling for introduction and no-context cases"""
try:
# First, check if this is an introduction/welcome message query
is_introduction = (
"wants support" in query and
"This is Introduction" in query and
("A new user with name:" in query or "An old user with name:" in query)
)
if is_introduction:
# Handle introduction message - no context needed
welcome_message = self._handle_contact_query(query)
return RAGResponse(
response=welcome_message,
context_docs=[],
sources=[],
scores=None
)
# Get conversation history if conversation_id exists
conversation_history = []
if conversation_id:
try:
conversation_history = await self.mongodb.get_recent_messages(
conversation_id,
limit=self.conversation_manager.max_messages
)
# Get relevant history within token limits
conversation_history = self.conversation_manager.get_relevant_history(
messages=conversation_history,
current_query=query
)
except Exception as e:
logger.warning(
f"Error fetching conversation history: {str(e)}")
# For all other queries, proceed with context-based response
if not context_docs:
context_docs, sources, scores = await self.retrieve_context(
query,
conversation_history=conversation_history
)
# Check if we have relevant context
has_relevant_context = self._check_context_relevance(
query, context_docs or []
)
# If no relevant context found, return the standard message
if not has_relevant_context:
return RAGResponse(
response="Information about this is not available, do you want to inquire about something else?",
context_docs=[],
sources=[],
scores=None
)
# Generate response using context and conversation history
prompt = self._create_response_prompt(
query=query,
context_docs=context_docs,
conversation_history=conversation_history
)
response_text = self.llm.generate(
prompt,
temperature=temperature,
max_tokens=max_tokens
)
# Check if the generated response indicates no information
cleaned_response = self._clean_response(response_text)
if self._is_no_info_response(cleaned_response):
return RAGResponse(
response="Information about this is not available, do you want to inquire about something else?",
context_docs=[],
sources=[],
scores=None
)
return RAGResponse(
response=cleaned_response,
context_docs=context_docs,
sources=sources,
scores=scores
)
except Exception as e:
logger.error(f"Error in SystemInstructionsRAGAgent: {str(e)}")
raise
def _create_response_prompt(
self,
query: str,
context_docs: List[str],
conversation_history: Optional[List[Dict]] = None
) -> str:
"""Create prompt for generating response from context and conversation history"""
# Format context documents
formatted_context = '\n\n'.join(
f"Context {i+1}:\n{doc.strip()}"
for i, doc in enumerate(context_docs)
if doc and doc.strip()
)
# Format conversation history if available
history_context = ""
if conversation_history:
history_messages = []
# Use last 3 messages for context
for msg in conversation_history[-3:]:
role = msg.get('role', 'unknown')
content = msg.get('content', '')
history_messages.append(f"{role.capitalize()}: {content}")
if history_messages:
history_context = "\nPrevious Conversation:\n" + \
"\n".join(history_messages)
return f"""
Use the following context and conversation history to provide information about: {query}
Context Information:
{formatted_context}
{history_context}
Instructions:
1. Use information from both the context and conversation history
2. If the information is found, provide a direct and concise response
3. Do not make assumptions or add information not present in the context
4. Ensure the response is clear and complete based on available information
5. If you cannot find relevant information about the specific query,
respond exactly with: "Information about this is not available, do you want to inquire about something else?"
Query: {query}
Response:"""
def _is_no_info_response(self, response: str) -> bool:
"""Check if the response indicates no information available"""
no_info_indicators = [
"i do not have",
"i don't have",
"no information",
"not available",
"could not find",
"couldn't find",
"cannot find"
]
response_lower = response.lower()
return any(indicator in response_lower for indicator in no_info_indicators)
def _check_context_relevance(self, query: str, context_docs: List[str]) -> bool:
"""Check if context contains information relevant to the query"""
if not context_docs:
return False
# Extract key terms from query (keeping important words)
query_words = query.lower().split()
stop_words = {'me', 'a', 'about', 'what', 'is',
'are', 'the', 'in', 'how', 'why', 'when', 'where'}
# Remove only basic stop words, keep important terms like "report", "share", etc.
query_terms = {word for word in query_words if word not in stop_words}
# Add additional relevant terms that might appear in the content
related_terms = {
'comprehensive',
'report',
'overview',
'summary',
'details',
'information'
}
query_terms.update(
word for word in query_words if word in related_terms)
# Check each context document for relevance
for doc in context_docs:
if not doc:
continue
doc_lower = doc.lower()
# Consider document relevant if it contains any query terms
# or if it starts with common report headers
if any(term in doc_lower for term in query_terms) or \
any(header in doc_lower for header in ['overview', 'comprehensive report', 'summary']):
return True
return False
def _handle_contact_query(self, query: str) -> str:
"""Handle queries from /user/contact endpoint"""
try:
name_start = query.find('name: "') + 7
name_end = query.find('"', name_start)
name = query[name_start:name_end] if name_start > 6 and name_end != -1 else "there"
is_returning = (
"An old user with name:" in query and
"wants support again" in query
)
if is_returning:
return f"Welcome back {name}, How can I help you?"
return f"Welcome {name}, How can I help you?"
except Exception as e:
logger.error(f"Error handling contact query: {str(e)}")
return "Welcome, How can I help you?"
def _clean_response(self, response: str) -> str:
"""Clean response by removing unwanted phrases"""
if not response:
return response
phrases_to_remove = [
"Based on the context provided,",
"According to the documents,",
"From the information available,",
"I can tell you that",
"Let me help you with that",
"I understand you're asking about",
"To answer your question,",
"The documents indicate that",
"Based on the available information,",
"As per the provided context,",
"I would be happy to help you with that",
"Let me provide you with information about",
"Here's what I found:",
"Here's the information you requested:",
"According to the provided information,",
"Based on the documents,",
"The information suggests that",
"From what I can see,",
"Let me explain",
"To clarify,",
"It appears that",
"I can see that",
"Sure,",
"Well,",
"Based on the given context,",
"The available information shows that",
"From the context provided,",
"The documentation mentions that",
"According to the context,",
"As shown in the context,",
"I apologize,"
]
cleaned_response = response
for phrase in phrases_to_remove:
cleaned_response = cleaned_response.replace(phrase, "").strip()
cleaned_response = " ".join(cleaned_response.split())
if not cleaned_response:
return response
if cleaned_response[0].islower():
cleaned_response = cleaned_response[0].upper(
) + cleaned_response[1:]
return cleaned_response
|