Spaces:
Running
Running
File size: 1,380 Bytes
e87abff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# src/llms/bert_llm.py
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from typing import Optional, List
from .base_llm import BaseLLM
class BERTLanguageModel(BaseLLM):
def __init__(
self,
model_name: str = "bert-base-uncased",
max_length: int = 512
):
"""Initialize BERT model"""
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.generator = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer
)
self.max_length = max_length
def generate(
self,
prompt: str,
max_tokens: Optional[int] = None,
temperature: float = 0.7,
**kwargs
) -> str:
"""Generate text using BERT"""
output = self.generator(
prompt,
max_length=max_tokens or self.max_length,
temperature=temperature,
**kwargs
)
return output[0]['generated_text']
def tokenize(self, text: str) -> List[str]:
"""Tokenize text using BERT tokenizer"""
return self.tokenizer.tokenize(text)
def count_tokens(self, text: str) -> int:
"""Count tokens in text"""
return len(self.tokenizer.encode(text)) |