File size: 1,380 Bytes
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# src/llms/bert_llm.py
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from typing import Optional, List
from .base_llm import BaseLLM

class BERTLanguageModel(BaseLLM):
    def __init__(
        self,
        model_name: str = "bert-base-uncased",
        max_length: int = 512
    ):
        """Initialize BERT model"""
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
        self.generator = pipeline(
            "text-generation",
            model=self.model,
            tokenizer=self.tokenizer
        )
        self.max_length = max_length

    def generate(
        self,
        prompt: str,
        max_tokens: Optional[int] = None,
        temperature: float = 0.7,
        **kwargs
    ) -> str:
        """Generate text using BERT"""
        output = self.generator(
            prompt,
            max_length=max_tokens or self.max_length,
            temperature=temperature,
            **kwargs
        )
        return output[0]['generated_text']

    def tokenize(self, text: str) -> List[str]:
        """Tokenize text using BERT tokenizer"""
        return self.tokenizer.tokenize(text)

    def count_tokens(self, text: str) -> int:
        """Count tokens in text"""
        return len(self.tokenizer.encode(text))