File size: 15,029 Bytes
aee2bfd
 
 
 
 
 
 
 
 
 
acdfaa9
 
aee2bfd
 
 
 
 
 
 
acdfaa9
 
aee2bfd
 
 
acdfaa9
aee2bfd
 
 
 
 
 
acdfaa9
 
aee2bfd
 
 
acdfaa9
 
aee2bfd
 
acdfaa9
aee2bfd
 
 
be32fd8
acdfaa9
aee2bfd
 
 
acdfaa9
aee2bfd
 
 
acdfaa9
aee2bfd
 
 
 
 
 
 
 
acdfaa9
aee2bfd
 
 
 
 
 
 
 
acdfaa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee2bfd
 
be32fd8
acdfaa9
 
aee2bfd
 
 
acdfaa9
aee2bfd
 
be32fd8
acdfaa9
aee2bfd
 
 
 
 
be32fd8
 
 
 
acdfaa9
 
 
 
aee2bfd
 
 
acdfaa9
aee2bfd
be32fd8
 
 
acdfaa9
be32fd8
 
 
acdfaa9
aee2bfd
acdfaa9
aee2bfd
 
 
 
 
 
acdfaa9
aee2bfd
 
acdfaa9
aee2bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acdfaa9
aee2bfd
 
 
 
 
 
 
be32fd8
 
 
acdfaa9
be32fd8
 
acdfaa9
be32fd8
 
 
 
acdfaa9
be32fd8
 
 
 
acdfaa9
be32fd8
 
aee2bfd
 
 
 
 
 
 
acdfaa9
aee2bfd
 
 
 
 
 
be32fd8
aee2bfd
 
 
acdfaa9
aee2bfd
 
be32fd8
acdfaa9
aee2bfd
 
 
 
 
 
 
acdfaa9
aee2bfd
 
 
 
 
acdfaa9
be32fd8
aee2bfd
 
 
 
 
 
acdfaa9
 
 
 
 
 
 
 
 
 
 
aee2bfd
 
 
 
be32fd8
aee2bfd
 
 
 
acdfaa9
aee2bfd
 
 
 
 
 
 
 
 
be32fd8
aee2bfd
 
 
acdfaa9
aee2bfd
 
 
 
 
 
be32fd8
aee2bfd
 
 
 
 
 
 
 
 
 
 
be32fd8
aee2bfd
 
acdfaa9
be32fd8
 
aee2bfd
 
 
 
 
be32fd8
aee2bfd
 
 
 
 
 
 
 
acdfaa9
aee2bfd
 
 
 
 
 
be32fd8
 
 
 
 
 
 
 
acdfaa9
be32fd8
 
 
 
 
 
 
 
 
acdfaa9
be32fd8
 
 
 
 
acdfaa9
be32fd8
 
 
 
 
 
 
 
 
 
acdfaa9
aee2bfd
be32fd8
 
 
acdfaa9
be32fd8
 
aee2bfd
 
 
 
acdfaa9
aee2bfd
be32fd8
aee2bfd
acdfaa9
aee2bfd
 
acdfaa9
aee2bfd
be32fd8
aee2bfd
acdfaa9
 
aee2bfd
acdfaa9
be32fd8
 
acdfaa9
aee2bfd
be32fd8
 
aee2bfd
 
 
 
be32fd8
 
 
 
 
acdfaa9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# src/utils/drive_document_processor.py
from pathlib import Path
from typing import Dict, List, Any, Tuple
import logging
from fastapi import HTTPException

from src.utils.google_drive_service import GoogleDriveService
from src.utils.document_processor import DocumentProcessor
from src.vectorstores.chroma_vectorstore import ChromaVectorStore
from src.utils.logger import logger
from src.db.mongodb_store import MongoDBStore


class DriveDocumentProcessor:
    def __init__(
        self,
        google_service_account_path: str,
        folder_id: str,
        temp_dir: str,
        doc_processor: DocumentProcessor,
        mongodb: MongoDBStore  # Add MongoDB
    ):
        """
        Initialize Drive Document Processor

        Args:
            google_service_account_path (str): Path to Google service account credentials
            folder_id (str): Google Drive folder ID to process
            temp_dir (str): Directory for temporary files
            doc_processor (DocumentProcessor): Instance of DocumentProcessor
        """
        self.google_drive_service = GoogleDriveService(
            google_service_account_path)
        self.folder_id = folder_id
        self.temp_dir = Path(temp_dir)
        self.doc_processor = doc_processor
        self.mongodb = mongodb  # Store MongoDB instance

        # Create temp directory if it doesn't exist
        self.temp_dir.mkdir(exist_ok=True)

        # Define supported MIME types
        self.supported_mime_types = {
            # Google Docs
            'application/vnd.google-apps.document': '.docx',

            # Microsoft Word Documents
            'application/vnd.openxmlformats-officedocument.wordprocessingml.document': '.docx',
            'application/msword': '.doc',

            # Microsoft Excel Documents
            'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': '.xlsx',
            'application/vnd.ms-excel': '.xls',

            # Text Documents
            'text/plain': '.txt',
            'text/csv': '.csv',
            'text/markdown': '.md',
            'text/html': '.html',
            'text/xml': '.xml',
            'application/json': '.json',
            'application/rtf': '.rtf',

            # PDF Documents
            'application/pdf': '.pdf'
        }

        self.google_docs_export_types = {
            'application/vnd.google-apps.document': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
        }

    async def _cleanup_orphaned_documents(
        self,
        drive_files: List[Dict[str, Any]],
        vector_store: ChromaVectorStore
    ) -> Dict[str, Any]:
        """
        Clean up documents that exist in MongoDB but not in Google Drive

        Args:
            drive_files (List[Dict[str, Any]]): List of files from Google Drive
            vector_store (ChromaVectorStore): Vector store instance

        Returns:
            Dict[str, Any]: Cleanup statistics
        """
        try:
            # Get all documents from MongoDB
            mongo_docs = await self.mongodb.get_all_documents()

            # Create set of Google Drive file IDs
            drive_file_ids = {file['id'] for file in drive_files}

            deleted_count = 0
            failed_deletions = []

            # Check each MongoDB document
            for doc in mongo_docs:
                # Only process Google Drive documents
                if doc.get('source') != 'google_drive':
                    continue

                doc_id = doc.get('document_id')
                if not doc_id or doc_id not in drive_file_ids:
                    try:
                        # Delete from MongoDB
                        await self.mongodb.delete_document(doc_id)

                        # Delete from vector store
                        vector_store.delete_document(doc_id)

                        deleted_count += 1

                    except Exception as e:
                        logger.error(
                            f"Error deleting orphaned document {doc_id}: {str(e)}")
                        failed_deletions.append({
                            'document_id': doc_id,
                            'error': str(e)
                        })

            return {
                'orphaned_documents_deleted': deleted_count,
                'failed_deletions': failed_deletions
            }

        except Exception as e:
            logger.error(f"Error in cleanup_orphaned_documents: {str(e)}")
            raise

    async def process_documents(
        self,
        vector_store: ChromaVectorStore,
        # New parameter with default True for backward compatibility
        include_subfolders: bool = True
    ) -> Dict[str, Any]:
        """
        Process all documents in the specified Drive folder

        Args:
            vector_store (ChromaVectorStore): Vector store instance
            include_subfolders (bool): Whether to process documents in subfolders

        Returns:
            Dict[str, Any]: Processing results
        """
        try:
            # Get documents from folder
            files = self.google_drive_service.get_folder_contents(
                self.folder_id,
                include_subfolders=include_subfolders
            )

            # Clean up orphaned documents first
            cleanup_results = await self._cleanup_orphaned_documents(files, vector_store)

            processed_files = []
            skipped_files = []
            errors = []

            for file in files:
                # Skip if it's a folder
                if file.get('mimeType') == 'application/vnd.google-apps.folder':
                    continue

                # Get file path (including folder structure if available)
                file_path = self._get_file_path(file)
                file['display_path'] = file_path

                result = await self._process_single_file(file, vector_store)

                if result['status'] == 'processed':
                    processed_files.append(result['data'])
                elif result['status'] == 'skipped':
                    skipped_files.append(result['data'])
                else:  # status == 'error'
                    errors.append(result['data'])

            # Clean up temporary directory if empty
            self._cleanup_temp_dir()

            return {
                "status": "completed",
                "processed_files": {
                    "count": len(processed_files),
                    "details": processed_files
                },
                "skipped_files": {
                    "count": len(skipped_files),
                    "details": skipped_files
                },
                "errors": {
                    "count": len(errors),
                    "details": errors
                }
            }

        except Exception as e:
            logger.error(f"Error processing Drive documents: {str(e)}")
            raise HTTPException(
                status_code=500,
                detail=f"Failed to process drive documents: {str(e)}"
            )

    def _get_file_path(self, file: Dict[str, Any]) -> str:
        """
        Get the full path for a file including its folder structure

        Args:
            file (Dict[str, Any]): File metadata

        Returns:
            str: Display path of the file
        """
        path_parts = [file['name']]

        # Add folder path if available (new structure)
        if folder_path := file.get('folder_path', []):
            for folder in reversed(folder_path):
                path_parts.insert(0, folder['name'])

        return '/'.join(path_parts)

    async def _process_single_file(
        self,
        file: Dict[str, Any],
        vector_store: ChromaVectorStore
    ) -> Dict[str, Any]:
        """Process a single Drive file"""
        mime_type = file.get('mimeType', '')

        # Skip if mime type not supported
        if mime_type not in self.supported_mime_types:
            return {
                'status': 'skipped',
                'data': {
                    'name': file['name'],
                    'path': file.get('display_path', file['name']),
                    'reason': f'Unsupported mime type: {mime_type}'
                }
            }

        try:
            document_id = file['id']
            modified_time = file.get('modifiedTime', 'N/A')

            # Check if document should be processed
            if self.save_document(document_id, vector_store, modified_time):
                # Download and process file
                temp_file_path = await self._download_and_save_file(
                    file['id'],
                    mime_type
                )

                try:
                    # Process document
                    processed_doc = await self.doc_processor.process_document(
                        str(temp_file_path)
                    )

                    # Add to vector store with path information
                    self._add_to_vector_store(
                        processed_doc['chunks'],
                        file,
                        mime_type,
                        vector_store
                    )

                    # Add MongoDB storage - Store Google Drive URL
                    await self.mongodb.store_document(
                        document_id=document_id,
                        filename=file['name'],
                        content_type=mime_type,
                        file_size=0,  # Not needed for drive documents
                        url_path=f"https://drive.google.com/file/d/{document_id}/view",
                        source="google_drive"
                    )

                    return {
                        'status': 'processed',
                        'data': {
                            'name': file['name'],
                            'path': file.get('display_path', file['name']),
                            'id': file['id'],
                            'chunks_processed': len(processed_doc['chunks'])
                        }
                    }

                finally:
                    # Clean up temporary file
                    if temp_file_path.exists():
                        temp_file_path.unlink()
            else:
                return {
                    'status': 'skipped',
                    'data': {
                        'name': file['name'],
                        'path': file.get('display_path', file['name']),
                        'reason': 'Document already exists in the memory.'
                    }
                }

        except Exception as e:
            logger.error(f"Error processing file {file['name']}: {str(e)}")
            return {
                'status': 'error',
                'data': {
                    'file_name': file['name'],
                    'path': file.get('display_path', file['name']),
                    'error': str(e)
                }
            }

    def _add_to_vector_store(
        self,
        chunks: List[str],
        file: Dict[str, Any],
        mime_type: str,
        vector_store: ChromaVectorStore
    ) -> None:
        """Add processed chunks to vector store with path information"""
        chunk_metadatas = []
        chunk_ids = []

        modified_time = file.get('modifiedTime', 'N/A')
        file_path = file.get('display_path', file['name'])

        for i, chunk in enumerate(chunks):
            chunk_id = f"{file['id']}-chunk-{i}"
            chunk_ids.append(chunk_id)
            chunk_metadatas.append({
                "source": file_path,  # Use full path instead of just name
                "document_id": file['id'],
                "chunk_index": i,
                "mime_type": mime_type,
                "modified_time": modified_time,
                "total_chunks": len(chunks),
                "file_type": self.supported_mime_types[mime_type],
                "is_google_doc": mime_type.startswith('application/vnd.google-apps')
            })

        vector_store.add_documents(
            documents=chunks,
            metadatas=chunk_metadatas,
            ids=chunk_ids
        )

    async def _download_and_save_file(
        self,
        file_id: str,
        mime_type: str
    ) -> Path:
        """Download and save file to temporary location"""
        extension = self.supported_mime_types[mime_type]
        temp_file_path = self.temp_dir / f"{file_id}{extension}"

        if mime_type in self.google_docs_export_types:
            # Download Google Doc in the specified export format
            content = self.google_drive_service.export_file(
                file_id,
                self.google_docs_export_types[mime_type]
            )
        else:
            # Download regular file
            content = self.google_drive_service.download_file(file_id)

        with open(temp_file_path, 'wb') as f:
            if isinstance(content, str):
                f.write(content.encode('utf-8'))
            else:
                f.write(content)

        return temp_file_path

    def save_document(
        self,
        document_id: str,
        vector_store: ChromaVectorStore,
        modified_date: str
    ) -> bool:
        """
        Check if document needs to be processed based on modification date

        Args:
            document_id (str): ID of the document to check
            vector_store (ChromaVectorStore): Vector store instance
            modified_date (str): Modified date to compare against

        Returns:
            bool: True if document should be processed, False otherwise
        """
        try:
            # Retrieve all chunks for the given document_id
            chunks = vector_store.get_document_chunks(document_id)

            if not chunks:
                # Document doesn't exist in vector store
                return True

            # Check the modified_time of the first chunk
            first_chunk_metadata = chunks[0].get("metadata", {})

            if first_chunk_metadata.get("modified_time") != modified_date:
                # If modified_time doesn't match, delete existing chunks
                vector_store.delete_document(document_id)
                logger.info(
                    f"Document {document_id} has been modified, will reprocess")
                return True

            logger.info(f"Document {document_id} is up to date, skipping")
            return False

        except Exception as e:
            logger.error(f"Error checking document status: {str(e)}")
            # In case of error, process the document to be safe
            return True

    def _cleanup_temp_dir(self) -> None:
        """Clean up temporary directory if empty"""
        try:
            if self.temp_dir.exists() and not any(self.temp_dir.iterdir()):
                self.temp_dir.rmdir()
        except Exception as e:
            logger.error(f"Error cleaning up temp directory: {str(e)}")
            # Don't raise the error as this is a cleanup operation