File size: 13,689 Bytes
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b953016
 
 
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
b953016
e87abff
 
 
 
b953016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
 
 
 
 
 
 
b953016
e87abff
b953016
e87abff
 
 
 
 
 
 
 
 
 
 
b953016
 
 
 
 
 
 
 
e87abff
 
 
 
 
b953016
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b953016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b953016
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
b953016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b953016
e87abff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# src/utils/document_processor.py
from typing import List, Dict, Optional, Union
import PyPDF2
import docx
import pandas as pd
import json
from pathlib import Path
import hashlib
import magic  # python-magic library for file type detection
from bs4 import BeautifulSoup
import csv
from datetime import datetime
import threading
from queue import Queue
import tiktoken
from langchain.text_splitter import RecursiveCharacterTextSplitter
import logging
from bs4.element import ProcessingInstruction
from .enhanced_excel_processor import EnhancedExcelProcessor

class DocumentProcessor:
    def __init__(
        self,
        chunk_size: int = 1000,
        chunk_overlap: int = 200,
        max_file_size: int = 10 * 1024 * 1024,  # 10MB
        supported_formats: Optional[List[str]] = None
    ):
        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap
        self.max_file_size = max_file_size
        self.supported_formats = supported_formats or [
            '.txt', '.pdf', '.docx', '.csv', '.json', 
            '.html', '.md', '.xml', '.rtf', '.xlsx', '.xls'
        ]
        self.processing_queue = Queue()
        self.processed_docs = {}
        self._initialize_text_splitter()
        
        # Initialize Excel processor
        self.excel_processor = EnhancedExcelProcessor()
        
        # Check for required packages
        try:
            import striprtf.striprtf
        except ImportError:
            logging.warning("Warning: striprtf package not found. RTF support will be limited.")
        
        try:
            from bs4 import BeautifulSoup
            import lxml
        except ImportError:
            logging.warning("Warning: beautifulsoup4 or lxml package not found. XML support will be limited.")

    def _initialize_text_splitter(self):
        """Initialize the text splitter with custom settings"""
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=self.chunk_size,
            chunk_overlap=self.chunk_overlap,
            length_function=len,
            separators=["\n\n", "\n", " ", ""]
        )

    def _extract_content(self, file_path: Path) -> str:
        """Extract content from different file formats"""
        suffix = file_path.suffix.lower()
    
        try:
            if suffix == '.pdf':
                return self._extract_pdf(file_path)
            elif suffix == '.docx':
                return self._extract_docx(file_path)
            elif suffix == '.csv':
                return self._extract_csv(file_path)
            elif suffix == '.json':
                return self._extract_json(file_path)
            elif suffix == '.html':
                return self._extract_html(file_path)
            elif suffix == '.txt' or suffix == '.md':
                return self._extract_text(file_path)
            elif suffix == '.xml':
                return self._extract_xml(file_path)
            elif suffix == '.rtf':
                return self._extract_rtf(file_path)
            elif suffix in ['.xlsx', '.xls']:
                return self._extract_excel(file_path)
            else:
                raise ValueError(f"Unsupported format: {suffix}")
        except Exception as e:
            raise Exception(f"Error extracting content from {file_path}: {str(e)}")

    def _extract_text(self, file_path: Path) -> str:
        """Extract content from text-based files"""
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                return f.read()
        except UnicodeDecodeError:
            with open(file_path, 'r', encoding='latin-1') as f:
                return f.read()

    def _extract_pdf(self, file_path: Path) -> str:
        """Extract text from PDF with advanced features"""
        text = ""
        with open(file_path, 'rb') as file:
            reader = PyPDF2.PdfReader(file)
            metadata = reader.metadata
            
            for page in reader.pages:
                text += page.extract_text() + "\n\n"
                
                # Extract images if available
                if '/XObject' in page['/Resources']:
                    for obj in page['/Resources']['/XObject'].get_object():
                        if page['/Resources']['/XObject'][obj]['/Subtype'] == '/Image':
                            pass
                            
        return text.strip()

    def _extract_docx(self, file_path: Path) -> str:
        """Extract text from DOCX with formatting"""
        doc = docx.Document(file_path)
        full_text = []
        
        for para in doc.paragraphs:
            full_text.append(para.text)
            
        for table in doc.tables:
            for row in table.rows:
                row_text = [cell.text for cell in row.cells]
                full_text.append(" | ".join(row_text))
                
        return "\n\n".join(full_text)

    def _extract_csv(self, file_path: Path) -> str:
        """Convert CSV to structured text"""
        df = pd.read_csv(file_path)
        return df.to_string()

    def _extract_json(self, file_path: Path) -> str:
        """Convert JSON to readable text"""
        with open(file_path) as f:
            data = json.load(f)
        return json.dumps(data, indent=2)

    def _extract_html(self, file_path: Path) -> str:
        """Extract text from HTML with structure preservation"""
        with open(file_path) as f:
            soup = BeautifulSoup(f, 'html.parser')
            
        for script in soup(["script", "style"]):
            script.decompose()
            
        text = soup.get_text(separator='\n')
        lines = [line.strip() for line in text.splitlines() if line.strip()]
        return "\n\n".join(lines)

    def _extract_xml(self, file_path: Path) -> str:
        """Extract text from XML with structure preservation"""
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                soup = BeautifulSoup(f, 'xml')
            
            for pi in soup.find_all(text=lambda text: isinstance(text, ProcessingInstruction)):
                pi.extract()
            
            text = soup.get_text(separator='\n')
            lines = [line.strip() for line in text.splitlines() if line.strip()]
            return "\n\n".join(lines)
        except Exception as e:
            raise Exception(f"Error processing XML file: {str(e)}")

    def _extract_rtf(self, file_path: Path) -> str:
        """Extract text from RTF files"""
        try:
            import striprtf.striprtf as striprtf
            
            with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
                rtf_text = f.read()
                
            plain_text = striprtf.rtf_to_text(rtf_text)
            lines = [line.strip() for line in plain_text.splitlines() if line.strip()]
            return "\n\n".join(lines)
        except ImportError:
            raise ImportError("striprtf package is required for RTF support.")
        except Exception as e:
            raise Exception(f"Error processing RTF file: {str(e)}")

    def _extract_excel(self, file_path: Path) -> str:
        """Extract content from Excel files with enhanced processing"""
        try:
            # Use enhanced Excel processor
            processed_content = self.excel_processor.process_excel(file_path)
            
            # If processing fails, fall back to basic processing
            if not processed_content:
                logging.warning(f"Enhanced Excel processing failed for {file_path}, falling back to basic processing")
                return self._basic_excel_extract(file_path)
                
            return processed_content
            
        except Exception as e:
            logging.error(f"Error in enhanced Excel processing: {str(e)}")
            # Fall back to basic Excel processing
            return self._basic_excel_extract(file_path)

    def _basic_excel_extract(self, file_path: Path) -> str:
        """Basic Excel extraction as fallback"""
        try:
            excel_file = pd.ExcelFile(file_path)
            sheets_data = []
            
            for sheet_name in excel_file.sheet_names:
                df = pd.read_excel(excel_file, sheet_name=sheet_name)
                sheet_content = f"\nSheet: {sheet_name}\n"
                sheet_content += "=" * (len(sheet_name) + 7) + "\n"
                
                if df.empty:
                    sheet_content += "Empty Sheet\n"
                else:
                    sheet_content += df.fillna('').to_string(
                        index=False,
                        max_rows=None,
                        max_cols=None,
                        line_width=120
                    ) + "\n"
                    
                sheets_data.append(sheet_content)
            
            return "\n\n".join(sheets_data)
            
        except Exception as e:
            raise Exception(f"Error in basic Excel processing: {str(e)}")

    def _generate_metadata(
        self,
        file_path: Path,
        content: str,
        additional_metadata: Optional[Dict] = None
    ) -> Dict:
        """Generate comprehensive metadata"""
        file_stat = file_path.stat()
        
        metadata = {
            'filename': file_path.name,
            'file_type': file_path.suffix,
            'file_size': file_stat.st_size,
            'created_at': datetime.fromtimestamp(file_stat.st_ctime),
            'modified_at': datetime.fromtimestamp(file_stat.st_mtime),
            'content_hash': self._calculate_hash(content),
            'mime_type': magic.from_file(str(file_path), mime=True),
            'word_count': len(content.split()),
            'character_count': len(content),
            'processing_timestamp': datetime.now().isoformat()
        }
        
        # Add Excel-specific metadata if applicable
        if file_path.suffix.lower() in ['.xlsx', '.xls']:
            try:
                if hasattr(self.excel_processor, 'get_metadata'):
                    excel_metadata = self.excel_processor.get_metadata()
                    metadata.update({'excel_metadata': excel_metadata})
            except Exception as e:
                logging.warning(f"Could not extract Excel metadata: {str(e)}")
        
        if additional_metadata:
            metadata.update(additional_metadata)
            
        return metadata

    def _calculate_hash(self, text: str) -> str:
        """Calculate SHA-256 hash of text"""
        return hashlib.sha256(text.encode()).hexdigest()

    async def process_document(
        self,
        file_path: Union[str, Path],
        metadata: Optional[Dict] = None
    ) -> Dict:
        """Process a document with metadata and content extraction"""
        file_path = Path(file_path)
        
        if not self._validate_file(file_path):
            raise ValueError(f"Invalid file: {file_path}")

        content = self._extract_content(file_path)
        doc_metadata = self._generate_metadata(file_path, content, metadata)
        chunks = self.text_splitter.split_text(content)
        chunk_hashes = [self._calculate_hash(chunk) for chunk in chunks]
        
        return {
            'content': content,
            'chunks': chunks,
            'chunk_hashes': chunk_hashes,
            'metadata': doc_metadata,
            'statistics': self._generate_statistics(content, chunks)
        }

    def _validate_file(self, file_path: Path) -> bool:
        """Validate file type, size, and content"""
        if not file_path.exists():
            raise FileNotFoundError(f"File not found: {file_path}")
            
        if file_path.suffix.lower() not in self.supported_formats:
            raise ValueError(f"Unsupported file format: {file_path.suffix}")
            
        if file_path.stat().st_size > self.max_file_size:
            raise ValueError(f"File too large: {file_path}")
            
        if file_path.stat().st_size == 0:
            raise ValueError(f"Empty file: {file_path}")
            
        return True

    def _generate_statistics(self, content: str, chunks: List[str]) -> Dict:
        """Generate document statistics"""
        return {
            'total_chunks': len(chunks),
            'average_chunk_size': sum(len(chunk) for chunk in chunks) / len(chunks),
            'token_estimate': len(content.split()),
            'unique_words': len(set(content.lower().split())),
            'sentences': len([s for s in content.split('.') if s.strip()]),
        }

    async def batch_process(
        self,
        file_paths: List[Union[str, Path]],
        parallel: bool = True
    ) -> Dict[str, Dict]:
        """Process multiple documents in parallel"""
        results = {}
        
        if parallel:
            threads = []
            for file_path in file_paths:
                thread = threading.Thread(
                    target=self._process_and_store,
                    args=(file_path, results)
                )
                threads.append(thread)
                thread.start()
                
            for thread in threads:
                thread.join()
        else:
            for file_path in file_paths:
                await self._process_and_store(file_path, results)
                
        return results

    async def _process_and_store(
        self,
        file_path: Union[str, Path],
        results: Dict
    ):
        """Process a single document and store results"""
        try:
            result = await self.process_document(file_path)
            results[str(file_path)] = result
        except Exception as e:
            results[str(file_path)] = {'error': str(e)}