Spaces:
Running
Running
# src/main.py | |
import uvicorn | |
from config.config import settings | |
from src.utils.database_cleanup import perform_cleanup | |
from fastapi.security import APIKeyHeader | |
from fastapi import HTTPException, Depends | |
from fastapi.responses import JSONResponse | |
from src.models import ( | |
ChatRequest, | |
ChatResponse, | |
BatchUploadResponse, | |
SummarizeRequest, | |
SummaryResponse, | |
FeedbackRequest | |
) | |
from src.implementations.document_service import DocumentService | |
from src.db.mongodb_store import MongoDBStore | |
from src.utils.llm_utils import get_llm_instance, get_vector_store | |
from src.utils.logger import logger | |
from src.utils.conversation_summarizer import ConversationSummarizer | |
from src.utils.drive_document_processor import DriveDocumentProcessor | |
from src.utils.document_processor import DocumentProcessor | |
from src.models.UserContact import UserContactRequest | |
from src.models.document import AllDocumentsResponse, StoredDocument | |
from src.agents.system_instructions_rag import SystemInstructionsRAGAgent | |
from src.utils.google_drive_service import GoogleDriveService | |
from google_auth_oauthlib.flow import Flow | |
from google.oauth2.credentials import Credentials | |
from fastapi.responses import RedirectResponse | |
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks | |
from fastapi.responses import StreamingResponse, FileResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.middleware.cors import CORSMiddleware # Add this import | |
from typing import List | |
import uuid | |
from datetime import datetime | |
from pathlib import Path | |
import os | |
import asyncio | |
import chromadb | |
from pathlib import Path | |
import asyncio | |
import gc | |
import random | |
from typing import List | |
from src.utils.logger import logger | |
from config.config import settings | |
os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1' | |
# os.environ["OAUTHLIB_RELAX_TOKEN_SCOPE"] = "1" | |
# Import custom modules1 | |
# from src.agents.rag_agent import RAGAgent | |
app = FastAPI(title="Chatbot API") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["http://localhost:8080", | |
"http://localhost:3000", "https://chatbot-react-frontend.onrender.com", "https://chatbot.neurovise.ai"], # Add both ports | |
allow_credentials=True, | |
allow_methods=["*"], # Allows all methods | |
allow_headers=["*"], # Allows all headers | |
) | |
# google_drive_service = GoogleDriveService() | |
# Initialize MongoDB | |
mongodb = MongoDBStore(settings.MONGODB_URI) | |
# Initialize core components | |
doc_processor = DocumentProcessor() | |
summarizer = ConversationSummarizer() | |
document_service = DocumentService(doc_processor, mongodb) | |
# Create uploads directory if it doesn't exist | |
UPLOADS_DIR = Path("uploads") | |
UPLOADS_DIR.mkdir(exist_ok=True) | |
# Mount the uploads directory for static file serving | |
app.mount("/docs", StaticFiles(directory=str(UPLOADS_DIR)), name="documents") | |
# Security setup | |
API_KEY_HEADER = APIKeyHeader(name="ADMIN_API_KEY") | |
async def verify_api_key(api_key: str = Depends(API_KEY_HEADER)): | |
"""Verify admin API key""" | |
if not settings.ADMIN_API_KEY or api_key != settings.ADMIN_API_KEY: | |
raise HTTPException( | |
status_code=403, | |
detail="Invalid or missing API key" | |
) | |
return api_key | |
def get_chroma_client(): | |
"""Get a new ChromaDB client instance""" | |
return chromadb.PersistentClient( | |
path=settings.CHROMA_PATH, | |
settings=chromadb.Settings( | |
allow_reset=True, | |
is_persistent=True | |
) | |
) | |
async def get_all_documents(): | |
"""Get all documents from MongoDB""" | |
try: | |
documents = await mongodb.get_all_documents() | |
formatted_documents = [] | |
for doc in documents: | |
try: | |
formatted_doc = { | |
"document_id": doc.get("document_id"), | |
"filename": doc.get("filename"), | |
"content_type": doc.get("content_type"), | |
"file_size": doc.get("file_size"), | |
"url_path": doc.get("url_path"), | |
"upload_timestamp": doc.get("upload_timestamp"), | |
"source": doc.get("source") | |
} | |
formatted_documents.append(formatted_doc) | |
except Exception as e: | |
logger.error( | |
f"Error formatting document {doc.get('document_id', 'unknown')}: {str(e)}") | |
continue | |
# Sort documents by upload_timestamp in descending order (latest first) | |
formatted_documents.sort( | |
key=lambda x: x.get("upload_timestamp", datetime.min), | |
reverse=True | |
) | |
return { | |
"total_documents": len(formatted_documents), | |
"documents": formatted_documents | |
} | |
except Exception as e: | |
logger.error(f"Error retrieving documents: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def get_document_file(document_id: str): | |
"""Serve a document file by its ID""" | |
try: | |
# Get document info from MongoDB | |
doc = await mongodb.get_document(document_id) | |
if not doc: | |
raise HTTPException(status_code=404, detail="Document not found") | |
# Extract filename from url_path | |
filename = doc["url_path"].split("/")[-1] | |
file_path = UPLOADS_DIR / filename | |
if not file_path.exists(): | |
raise HTTPException( | |
status_code=404, | |
detail=f"File not found on server: {filename}" | |
) | |
return FileResponse( | |
path=str(file_path), | |
filename=doc["filename"], | |
media_type=doc["content_type"] | |
) | |
except Exception as e: | |
logger.error(f"Error serving document file: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def upload_documents( | |
files: List[UploadFile] = File(...), | |
background_tasks: BackgroundTasks = BackgroundTasks() | |
): | |
"""Upload and process multiple documents""" | |
try: | |
vector_store, _ = await get_vector_store() | |
response = await document_service.process_documents( | |
files, | |
vector_store, | |
background_tasks | |
) | |
return response | |
except Exception as e: | |
logger.error(f"Error in document upload: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def get_all_document_chunks(): | |
"""Get all document chunks from the vector store""" | |
try: | |
# Get vector store instance | |
vector_store, _ = await get_vector_store() | |
# Retrieve all documents | |
all_documents = vector_store.get_all_documents() | |
# If no documents, return a structured response instead of raising an exception | |
if not all_documents: | |
return { | |
"total_documents": 0, | |
"documents": [], | |
"message": "No documents are currently stored in the vector store. Upload some documents to see chunks." | |
} | |
# Group chunks by document_id | |
document_chunks = {} | |
for doc in all_documents: | |
# Safely extract document_id | |
document_id = doc.get('metadata', {}).get('document_id', | |
doc.get('id', | |
str(uuid.uuid4()))) | |
# Ensure metadata is a dictionary | |
metadata = doc.get('metadata', {}) if isinstance( | |
doc.get('metadata'), dict) else {} | |
# Create chunk entry | |
chunk = { | |
'text': str(doc.get('text', '')), | |
'metadata': metadata | |
} | |
# Group chunks by document_id | |
if document_id not in document_chunks: | |
document_chunks[document_id] = [] | |
document_chunks[document_id].append(chunk) | |
# Prepare response | |
processed_documents = [] | |
for doc_id, chunks in document_chunks.items(): | |
processed_documents.append({ | |
"document_id": doc_id, | |
"total_chunks": len(chunks), | |
"chunks": chunks | |
}) | |
return { | |
"total_documents": len(processed_documents), | |
"documents": processed_documents, | |
"message": f"Successfully retrieved {len(processed_documents)} documents" | |
} | |
except Exception as e: | |
# Log the full error for debugging | |
logger.error( | |
f"Error retrieving all document chunks: {str(e)}", exc_info=True) | |
# Return a structured error response | |
return { | |
"total_documents": 0, | |
"documents": [], | |
"message": f"An error occurred while retrieving document chunks: {str(e)}" | |
} | |
async def get_document_chunks(document_id: str): | |
"""Get all chunks for a specific document""" | |
try: | |
vector_store, _ = await get_vector_store() | |
chunks = vector_store.get_document_chunks(document_id) | |
if not chunks: | |
raise HTTPException(status_code=404, detail="Document not found") | |
return { | |
"document_id": document_id, | |
"total_chunks": len(chunks), | |
"chunks": chunks | |
} | |
except Exception as e: | |
logger.error(f"Error retrieving document chunks: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def delete_document(document_id: str): | |
"""Delete document from MongoDB, ChromaDB, and physical storage""" | |
try: | |
# First get document details from MongoDB to get file path | |
document = await mongodb.get_document(document_id) | |
# if not document: | |
# raise HTTPException(status_code=404, detail="Document not found") | |
# Get vector store instance | |
vector_store, _ = await get_vector_store() | |
# Delete physical file using document service | |
deletion_success = await document_service.delete_document(document_id) | |
if not deletion_success: | |
logger.warning( | |
f"Failed to delete physical file for document {document_id}") | |
# Delete from vector store | |
try: | |
vector_store.delete_document(document_id) | |
except Exception as e: | |
logger.error( | |
f"Error deleting document from vector store: {str(e)}") | |
raise HTTPException( | |
status_code=500, | |
detail=f"Failed to delete document from vector store: {str(e)}" | |
) | |
# Delete from MongoDB - don't check return value since document might already be deleted | |
await mongodb.delete_document(document_id) | |
return { | |
"status": "success", | |
"message": f"Document {document_id} successfully deleted from all stores" | |
} | |
except HTTPException: | |
raise | |
except Exception as e: | |
logger.error(f"Error in delete_document endpoint: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def process_drive_documents(): | |
try: | |
# Initialize vector store | |
vector_store, _ = await get_vector_store() | |
# Initialize Drive document processor | |
drive_processor = DriveDocumentProcessor( | |
google_service_account_path=settings.GOOGLE_SERVICE_ACCOUNT_PATH, | |
folder_id=settings.GOOGLE_DRIVE_FOLDER_ID, | |
temp_dir=settings.TEMP_DOWNLOAD_DIR, | |
doc_processor=doc_processor, | |
mongodb=mongodb # Add MongoDB instance | |
) | |
# Process documents | |
result = await drive_processor.process_documents(vector_store) | |
return result | |
except Exception as e: | |
logger.error(f"Error in process_drive_documents: {str(e)}") | |
raise HTTPException( | |
status_code=500, | |
detail=str(e) | |
) | |
async def create_user_contact( | |
request: UserContactRequest, | |
background_tasks: BackgroundTasks | |
): | |
"""Create or retrieve user conversation based on contact information""" | |
try: | |
# Check for existing user | |
existing_conversation_id = await mongodb.find_existing_user( | |
email=request.email, | |
phone_number=request.phone_number | |
) | |
if existing_conversation_id: | |
chat_request = ChatRequest( | |
query=f'An old user with name: "{request.full_name}", email: "{request.email}" and phone number: "{request.phone_number}" wants support again. This is Introduction Create a welcome back message for him and ask how i can help you today?', | |
llm_provider="openai", | |
max_context_docs=3, | |
temperature=1.0, | |
stream=False, | |
conversation_id=existing_conversation_id | |
) | |
else: | |
# Create new conversation with user information | |
new_conversation_id = str(uuid.uuid4()) | |
await mongodb.create_conversation( | |
conversation_id=new_conversation_id, | |
full_name=request.full_name, | |
email=request.email, | |
phone_number=request.phone_number | |
) | |
chat_request = ChatRequest( | |
query=f'A new user with name: "{request.full_name}", email: "{request.email}" and phone number: "{request.phone_number}" wants support. This is Introduction Create a welcome message for him and ask how i can help you today?', | |
llm_provider="openai", | |
max_context_docs=3, | |
temperature=1.0, | |
stream=False, | |
conversation_id=new_conversation_id | |
) | |
# Call chat_endpoint with the prepared request | |
return await chat_endpoint(chat_request, background_tasks) | |
except Exception as e: | |
logger.error(f"Error in create_user_contact: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def chat_endpoint( | |
request: ChatRequest, | |
background_tasks: BackgroundTasks | |
): | |
"""Chat endpoint with RAG support and enhanced Excel handling""" | |
try: | |
# Initialize core components | |
logger.info( | |
f"Initializing vector store and embedding: {str(datetime.now())}") | |
vector_store, embedding_model = await get_vector_store() | |
logger.info(f"Initializing LLM: {str(datetime.now())}") | |
llm = get_llm_instance(request.llm_provider) | |
# Initialize RAG agent | |
# rag_agent = RAGAgent( | |
# llm=llm, | |
# embedding=embedding_model, | |
# vector_store=vector_store, | |
# mongodb=mongodb | |
# ) | |
rag_agent = SystemInstructionsRAGAgent( | |
llm=llm, | |
embedding=embedding_model, | |
vector_store=vector_store, | |
mongodb=mongodb | |
) | |
# rag_agent.add_custom_role( | |
# "Knowledge based chatbot and introduction specialist", | |
# """You are a welcome agent with knowledge based specialist focusing on knowledge attached and create a beautiful welcome message. | |
# Your role is to: | |
# 1. Your response should be short and to the point. | |
# 2. Strictly follow this point for If it is an introduction. You strictly respond that "Welcome name of customer to our platform. How can I help you today?" | |
# """ | |
# ) | |
# rag_agent.add_custom_role( | |
# "Knowledge based chatbot", | |
# """You are a knowledge based specialist focusing on knowledge attached. | |
# Your role is to: | |
# 1. Your response should be short and to the point. | |
# 2. if it is not introduction then make sure to share the response from Vector store. | |
# 3. If you do not find relevant information. Just say I do not have this information but this do not apply to introduction message. | |
# 4. If there is an introduction, you should ignore above roles and connect with LLm to have a welcome message for the user. | |
# """ | |
# ) | |
# Use provided conversation ID or create new one | |
conversation_id = request.conversation_id or str(uuid.uuid4()) | |
# Process the query | |
query = request.query | |
# Add specific instructions for certain types of queries | |
# if "introduce" in query.lower() or "name" in query.lower() or "email" in query.lower(): | |
# query += ". The response should be short and to the point. Make sure to not add any irrelevant information. make sure to share the response from Vector store, if you do not find information in vector store. Just respond I do not have information. Keep the introduction concise and friendly." | |
# Generate response | |
logger.info(f"Generating response: {str(datetime.now())}") | |
max_retries = 3 | |
retry_count = 0 | |
response = None | |
last_error = None | |
while retry_count < max_retries and response is None: | |
try: | |
response = await rag_agent.generate_response( | |
query=query, | |
conversation_id=conversation_id, | |
temperature=request.temperature, | |
max_tokens=request.max_tokens if hasattr( | |
request, 'max_tokens') else None | |
) | |
break | |
except Exception as e: | |
last_error = e | |
retry_count += 1 | |
logger.warning(f"Attempt {retry_count} failed: {str(e)}") | |
await asyncio.sleep(1) # Brief pause before retry | |
if response is None: | |
raise last_error or Exception( | |
"Failed to generate response after retries") | |
logger.info(f"Response generated: {str(datetime.now())}") | |
# Prepare response metadata | |
metadata = { | |
'llm_provider': request.llm_provider, | |
'temperature': request.temperature, | |
'conversation_id': conversation_id | |
} | |
# Add Excel-specific metadata if present | |
has_excel_content = any( | |
doc and 'Sheet:' in doc | |
for doc in (response.context_docs or []) | |
) | |
if has_excel_content: | |
try: | |
metadata['excel_content'] = True | |
# Extract Excel-specific insights if available | |
if hasattr(rag_agent, 'get_excel_insights'): | |
excel_insights = rag_agent.get_excel_insights( | |
query=query, | |
context_docs=response.context_docs | |
) | |
if excel_insights: | |
metadata['excel_insights'] = excel_insights | |
except Exception as e: | |
logger.warning(f"Error processing Excel metadata: {str(e)}") | |
# Store message in chat history | |
await mongodb.store_message( | |
conversation_id=conversation_id, | |
query=request.query, | |
response=response.response, | |
context=response.context_docs, | |
sources=response.sources, | |
llm_provider=request.llm_provider | |
) | |
# Prepare and return response | |
chat_response = ChatResponse( | |
response=response.response, | |
context=response.context_docs, | |
sources=response.sources, | |
conversation_id=conversation_id, | |
timestamp=datetime.now(), | |
relevant_doc_scores=response.scores if hasattr( | |
response, 'scores') else None, | |
metadata=metadata | |
) | |
# Log completion | |
logger.info(f"Chat response completed: {str(datetime.now())}") | |
return chat_response | |
except Exception as e: | |
logger.error(f"Error in chat endpoint: {str(e)}", exc_info=True) | |
# Convert known errors to HTTPException with appropriate status codes | |
if isinstance(e, ValueError): | |
raise HTTPException(status_code=400, detail=str(e)) | |
elif isinstance(e, (KeyError, AttributeError)): | |
raise HTTPException( | |
status_code=500, detail="Internal processing error") | |
else: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def get_conversation_history(conversation_id: str): | |
"""Get complete conversation history""" | |
history = await mongodb.get_conversation_history(conversation_id) | |
if not history: | |
raise HTTPException(status_code=404, detail="Conversation not found") | |
return { | |
"conversation_id": conversation_id, | |
"messages": history | |
} | |
async def summarize_conversation(request: SummarizeRequest): | |
"""Generate a summary of a conversation""" | |
try: | |
messages = await mongodb.get_messages_for_summary(request.conversation_id) | |
if not messages: | |
raise HTTPException( | |
status_code=404, detail="Conversation not found") | |
summary = await summarizer.summarize_conversation( | |
messages, | |
include_metadata=request.include_metadata | |
) | |
return SummaryResponse(**summary) | |
except Exception as e: | |
logger.error(f"Error generating summary: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def submit_feedback( | |
conversation_id: str, | |
feedback_request: FeedbackRequest | |
): | |
"""Submit feedback for a conversation""" | |
try: | |
# Validate conversation exists | |
conversation = await mongodb.get_conversation_metadata(conversation_id) | |
if not conversation: | |
raise HTTPException( | |
status_code=404, detail="Conversation not found") | |
# Update feedback | |
success = await mongodb.update_feedback( | |
conversation_id=conversation_id, | |
feedback=feedback_request.feedback, | |
rating=feedback_request.rating | |
) | |
if not success: | |
raise HTTPException( | |
status_code=500, | |
detail="Failed to update feedback" | |
) | |
return { | |
"status": "success", | |
"message": "Feedback submitted successfully", | |
"data": { | |
"conversation_id": conversation_id, | |
"feedback": feedback_request.feedback, | |
"rating": feedback_request.format_rating() | |
} | |
} | |
except HTTPException: | |
raise | |
except Exception as e: | |
logger.error(f"Error submitting feedback: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def debug_config(): | |
"""Debug endpoint to check configuration""" | |
import os | |
from config.config import settings | |
from pathlib import Path | |
debug_info = { | |
"environment_variables": { | |
"OPENAI_API_KEY": "[SET]" if os.getenv('OPENAI_API_KEY') else "[NOT SET]", | |
"OPENAI_MODEL": os.getenv('OPENAI_MODEL', '[NOT SET]') | |
}, | |
"settings": { | |
"OPENAI_API_KEY": "[SET]" if settings.OPENAI_API_KEY else "[NOT SET]", | |
"OPENAI_MODEL": settings.OPENAI_MODEL, | |
}, | |
"files": { | |
"env_file_exists": Path('.env').exists(), | |
"openai_config_exists": (Path.home() / '.openai' / 'api_key').exists() | |
} | |
} | |
if settings.OPENAI_API_KEY: | |
key = settings.OPENAI_API_KEY | |
debug_info["api_key_info"] = { | |
"length": len(key), | |
"preview": f"{key[:4]}...{key[-4:]}" if len(key) > 8 else "[INVALID LENGTH]" | |
} | |
return debug_info | |
async def cleanup_databases( | |
include_files: bool = True, | |
api_key: str = Depends(verify_api_key) | |
): | |
""" | |
Clean up all data from ChromaDB and MongoDB | |
Args: | |
include_files (bool): Whether to also delete uploaded files | |
Returns: | |
Dict: Cleanup operation summary with restart information | |
""" | |
try: | |
result = await perform_cleanup(mongodb, include_files) | |
# If restart is needed, return 202 Accepted instead of 200 OK | |
if result.get("restart_needed"): | |
return JSONResponse( | |
status_code=202, | |
content={ | |
**result, | |
"message": "Cleanup partially completed. Please restart the server to complete ChromaDB cleanup." | |
} | |
) | |
return result | |
except Exception as e: | |
logger.error(f"Error in cleanup operation: {str(e)}") | |
raise HTTPException( | |
status_code=500, | |
detail=f"Error during cleanup: {str(e)}" | |
) | |
async def health_check(): | |
"""Health check endpoint""" | |
return {"status": "healthy"} | |
if __name__ == "__main__": | |
import os | |
import uvicorn | |
# Get port from environment variable or default to 8000 | |
port = int(os.getenv("PORT", 8000)) | |
# Run the application | |
uvicorn.run( | |
"src.main:app", | |
host="0.0.0.0", | |
port=port, | |
reload=False # Set to False for production | |
) | |