chatbot-backend / src /utils /document_processor.py
TalatMasood's picture
Updarte chatbot with deployment configurations on the Render
415595f
raw
history blame
26.1 kB
# src/utils/document_processor.py
from typing import List, Dict, Optional, Union
import PyPDF2
import docx
import pandas as pd
import json
from pathlib import Path
import hashlib
import magic
from bs4 import BeautifulSoup
import csv
from datetime import datetime
import threading
from queue import Queue
import tiktoken
from langchain.text_splitter import RecursiveCharacterTextSplitter
import logging
from bs4.element import ProcessingInstruction
from config.config import Settings
from .enhanced_excel_processor import EnhancedExcelProcessor
class DocumentProcessor:
def __init__(
self,
chunk_size: Optional[int] = None,
chunk_overlap: Optional[int] = None,
max_file_size: Optional[int] = None,
supported_formats: Optional[List[str]] = None
):
"""
Initialize DocumentProcessor with configurable parameters
Args:
chunk_size (Optional[int]): Size of text chunks
chunk_overlap (Optional[int]): Overlap between chunks
max_file_size (Optional[int]): Maximum file size in bytes
supported_formats (Optional[List[str]]): List of supported file extensions
"""
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Get settings with validation
default_settings = Settings.get_document_processor_settings()
# Use provided values or defaults from settings
self.chunk_size = chunk_size if chunk_size is not None else default_settings[
'chunk_size']
self.chunk_overlap = chunk_overlap if chunk_overlap is not None else default_settings[
'chunk_overlap']
self.max_file_size = max_file_size if max_file_size is not None else default_settings[
'max_file_size']
self.supported_formats = supported_formats if supported_formats is not None else default_settings[
'supported_formats']
# Validate settings
self._validate_settings()
# Initialize existing components
self.processing_queue = Queue()
self.processed_docs = {}
self._initialize_text_splitter()
self.excel_processor = EnhancedExcelProcessor()
# Check for required packages (keep existing functionality)
try:
import striprtf.striprtf
except ImportError:
logging.warning(
"Warning: striprtf package not found. RTF support will be limited.")
try:
from bs4 import BeautifulSoup
import lxml
except ImportError:
logging.warning(
"Warning: beautifulsoup4 or lxml package not found. XML support will be limited.")
def _validate_settings(self):
"""Validate and adjust settings if necessary"""
# Ensure chunk_size is positive and reasonable
self.chunk_size = max(100, self.chunk_size)
# Ensure chunk_overlap is less than chunk_size
self.chunk_overlap = min(self.chunk_overlap, self.chunk_size - 50)
# Ensure max_file_size is reasonable (minimum 1MB)
self.max_file_size = max(1024 * 1024, self.max_file_size)
# Ensure supported_formats contains valid extensions
if not self.supported_formats:
# Fallback to default supported formats if empty
self.supported_formats = Settings.DOCUMENT_PROCESSOR['supported_formats']
# Ensure all formats start with a dot
self.supported_formats = [
f".{fmt.lower().lstrip('.')}" if not fmt.startswith(
'.') else fmt.lower()
for fmt in self.supported_formats
]
def _initialize_text_splitter(self):
"""Initialize the text splitter with custom settings"""
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
length_function=len,
# Modify separators to better handle markdown while maintaining overlap
separators=["\n\n", "\n", " ", ""],
keep_separator=True,
add_start_index=True,
strip_whitespace=False # Keep whitespace to maintain markdown formatting
)
def split_text(self, text: str) -> List[str]:
"""Split text with enforced overlap while preserving structure"""
try:
# Get initial split using RecursiveCharacterTextSplitter
initial_chunks = self.text_splitter.split_text(text)
if len(initial_chunks) <= 1:
return initial_chunks
# Process chunks with enforced overlap
final_chunks = []
for i, current_chunk in enumerate(initial_chunks):
if i == 0:
final_chunks.append(current_chunk)
continue
prev_chunk = final_chunks[-1]
# Get the last part of previous chunk for overlap
overlap_size = min(self.chunk_overlap, len(prev_chunk))
overlap_text = prev_chunk[-overlap_size:]
# For tables, include the header row
if '|' in current_chunk and '\n' in current_chunk:
table_lines = current_chunk.split('\n')
header_lines = []
for line in table_lines:
if line.strip().startswith('|'):
header_lines.append(line)
else:
break
if header_lines:
header_text = '\n'.join(header_lines) + '\n'
overlap_text = header_text + overlap_text
# Create new chunk with overlap
new_chunk = overlap_text + current_chunk
# Ensure we don't have duplicate content at the overlap point
if current_chunk.startswith(overlap_text):
new_chunk = current_chunk
# Add context from previous chunk when needed
if not any(marker in new_chunk for marker in ['**AGENDA**', '**DISCUSSIONS**', '| No |']):
context_markers = ['**AGENDA**',
'**DISCUSSIONS**', '| No |']
for marker in context_markers:
if marker in prev_chunk and marker not in new_chunk:
new_chunk = marker + "\n" + new_chunk
break
final_chunks.append(new_chunk)
# Validate and log overlaps
for i in range(len(final_chunks)-1):
actual_overlap = self._find_actual_overlap(
final_chunks[i], final_chunks[i+1])
logging.debug(
f"Overlap between chunks {i} and {i+1}: {len(actual_overlap)} characters")
if len(actual_overlap) < self.chunk_overlap:
logging.warning(
f"Insufficient overlap between chunks {i} and {i+1}")
return final_chunks
for start, end in table_sections:
# Process text before table if exists
if start > current_position:
non_table_text = text[current_position:start]
if non_table_text.strip():
text_chunks = self.text_splitter.split_text(
non_table_text)
if chunks and text_chunks:
# Ensure overlap with previous chunk
prev_chunk = chunks[-1]
overlap = self._get_overlap_text(prev_chunk)
text_chunks[0] = overlap + text_chunks[0]
chunks.extend(text_chunks)
# Process table as a single chunk with overlap
table_text = text[start:end]
if chunks:
prev_chunk = chunks[-1]
overlap = self._get_overlap_text(prev_chunk)
table_text = overlap + table_text
chunks.append(table_text)
current_position = end
# Process remaining text after last table
if current_position < len(text):
remaining_text = text[current_position:]
if remaining_text.strip():
text_chunks = self.text_splitter.split_text(remaining_text)
if chunks and text_chunks:
# Ensure overlap with previous chunk
prev_chunk = chunks[-1]
overlap = self._get_overlap_text(prev_chunk)
text_chunks[0] = overlap + text_chunks[0]
chunks.extend(text_chunks)
# Validate and adjust overlaps
chunks = self._ensure_minimum_overlap(chunks)
# Log chunk details for debugging
for i in range(len(chunks)-1):
overlap = self._find_actual_overlap(chunks[i], chunks[i+1])
logging.debug(
f"Overlap between chunks {i} and {i+1}: {len(overlap)} characters")
logging.debug(f"End of chunk {i}: {chunks[i][-50:]}")
logging.debug(f"Start of chunk {i+1}: {chunks[i+1][:50]}")
return chunks
except Exception as e:
logging.error(f"Error in split_text: {str(e)}")
# Fallback to original text splitter
return self.text_splitter.split_text(text)
def _find_break_point(self, text: str, prev_chunk: str) -> int:
"""
Find suitable breaking point that maintains document structure
Args:
text (str): Text to find break point in (the overlap portion)
prev_chunk (str): The complete previous chunk for context
Returns:
int: Position of suitable break point
"""
# Get the context of how the previous chunk ends
prev_chunk_lines = prev_chunk.split('\n')
# Special handling for markdown tables
if '|' in prev_chunk:
# Check if we're in the middle of a table
table_rows = [
line for line in prev_chunk_lines if line.strip().startswith('|')]
if table_rows:
# Find where the current table starts in the text
table_start = text.find('|')
if table_start >= 0:
# Find the next row boundary
next_row = text.find('\n', table_start)
if next_row >= 0:
return next_row + 1 # Include the newline
# Define break point markers in order of preference
break_markers = [
('\n\n', True), # Paragraph breaks (keep marker)
('\n', True), # Line breaks (keep marker)
('. ', True), # Sentence endings (keep marker)
(', ', True), # Clause breaks (keep marker)
(' ', False) # Word breaks (don't keep marker)
]
# Check the structure of the previous chunk end
last_line = prev_chunk_lines[-1] if prev_chunk_lines else ""
# Look for each type of break point
for marker, keep_marker in break_markers:
if marker in text:
# Try to find a break point that maintains document structure
marker_positions = [i for i in range(
len(text)) if text[i:i+len(marker)] == marker]
for pos in reversed(marker_positions):
# Check if this break point would maintain document structure
if self._is_valid_break_point(text, pos, last_line):
return pos + (len(marker) if keep_marker else 0)
# If no suitable break point found, default to exact position
return min(len(text), self.chunk_overlap)
def _is_valid_break_point(self, text: str, position: int, last_line: str) -> bool:
"""
Check if a break point would maintain document structure
Args:
text (str): Text being checked
position (int): Potential break position
last_line (str): Last line of previous chunk
Returns:
bool: True if break point is valid
"""
# Don't break in the middle of markdown formatting
markdown_markers = ['*', '_', '`', '[', ']', '(', ')', '#']
if position > 0 and position < len(text) - 1:
if text[position-1] in markdown_markers or text[position+1] in markdown_markers:
return False
# Don't break in the middle of a table cell
if '|' in last_line:
cell_count = last_line.count('|')
text_before_break = text[:position]
if text_before_break.count('|') % cell_count != 0:
return False
# Don't break URLs or code blocks
url_patterns = ['http://', 'https://', '```', '`']
for pattern in url_patterns:
if pattern in text[:position] and pattern not in text[position:]:
return False
return True
def _validate_chunks(self, original_text: str, chunks: List[str]) -> bool:
"""Validate that chunks maintain document integrity"""
try:
# Remove overlap to check content
reconstructed = chunks[0]
for chunk in chunks[1:]:
if len(chunk) > self.chunk_overlap:
reconstructed += chunk[self.chunk_overlap:]
# Clean both texts for comparison (remove extra whitespace)
clean_original = ' '.join(original_text.split())
clean_reconstructed = ' '.join(reconstructed.split())
return clean_original == clean_reconstructed
except Exception as e:
logging.error(f"Error validating chunks: {str(e)}")
return False
def _extract_content(self, file_path: Path) -> str:
"""Extract content from different file formats"""
suffix = file_path.suffix.lower()
try:
if suffix == '.pdf':
return self._extract_pdf(file_path)
elif suffix == '.docx':
return self._extract_docx(file_path)
elif suffix == '.csv':
return self._extract_csv(file_path)
elif suffix == '.json':
return self._extract_json(file_path)
elif suffix == '.html':
return self._extract_html(file_path)
elif suffix == '.txt' or suffix == '.md':
return self._extract_text(file_path)
elif suffix == '.xml':
return self._extract_xml(file_path)
elif suffix == '.rtf':
return self._extract_rtf(file_path)
elif suffix in ['.xlsx', '.xls']:
return self._extract_excel(file_path)
else:
raise ValueError(f"Unsupported format: {suffix}")
except Exception as e:
raise Exception(
f"Error extracting content from {file_path}: {str(e)}")
def _extract_text(self, file_path: Path) -> str:
"""Extract content from text-based files"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
except UnicodeDecodeError:
with open(file_path, 'r', encoding='latin-1') as f:
return f.read()
def _extract_pdf(self, file_path: Path) -> str:
"""Extract text from PDF with advanced features"""
text = ""
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
metadata = reader.metadata
for page in reader.pages:
text += page.extract_text() + "\n\n"
# Extract images if available
if '/XObject' in page['/Resources']:
for obj in page['/Resources']['/XObject'].get_object():
if page['/Resources']['/XObject'][obj]['/Subtype'] == '/Image':
pass
return text.strip()
def _extract_docx(self, file_path: Path) -> str:
"""Extract text from DOCX with formatting"""
doc = docx.Document(file_path)
full_text = []
for para in doc.paragraphs:
full_text.append(para.text)
for table in doc.tables:
for row in table.rows:
row_text = [cell.text for cell in row.cells]
full_text.append(" | ".join(row_text))
return "\n\n".join(full_text)
def _extract_csv(self, file_path: Path) -> str:
"""Convert CSV to structured text"""
df = pd.read_csv(file_path)
return df.to_string()
def _extract_json(self, file_path: Path) -> str:
"""Convert JSON to readable text"""
with open(file_path) as f:
data = json.load(f)
return json.dumps(data, indent=2)
def _extract_html(self, file_path: Path) -> str:
"""Extract text from HTML with structure preservation"""
with open(file_path) as f:
soup = BeautifulSoup(f, 'html.parser')
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator='\n')
lines = [line.strip() for line in text.splitlines() if line.strip()]
return "\n\n".join(lines)
def _extract_xml(self, file_path: Path) -> str:
"""Extract text from XML with structure preservation"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
soup = BeautifulSoup(f, 'xml')
for pi in soup.find_all(text=lambda text: isinstance(text, ProcessingInstruction)):
pi.extract()
text = soup.get_text(separator='\n')
lines = [line.strip()
for line in text.splitlines() if line.strip()]
return "\n\n".join(lines)
except Exception as e:
raise Exception(f"Error processing XML file: {str(e)}")
def _extract_rtf(self, file_path: Path) -> str:
"""Extract text from RTF files"""
try:
import striprtf.striprtf as striprtf
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
rtf_text = f.read()
plain_text = striprtf.rtf_to_text(rtf_text)
lines = [line.strip()
for line in plain_text.splitlines() if line.strip()]
return "\n\n".join(lines)
except ImportError:
raise ImportError("striprtf package is required for RTF support.")
except Exception as e:
raise Exception(f"Error processing RTF file: {str(e)}")
def _extract_excel(self, file_path: Path) -> str:
"""Extract content from Excel files with enhanced processing"""
try:
# Use enhanced Excel processor
processed_content = self.excel_processor.process_excel(file_path)
# If processing fails, fall back to basic processing
if not processed_content:
logging.warning(
f"Enhanced Excel processing failed for {file_path}, falling back to basic processing")
return self._basic_excel_extract(file_path)
return processed_content
except Exception as e:
logging.error(f"Error in enhanced Excel processing: {str(e)}")
# Fall back to basic Excel processing
return self._basic_excel_extract(file_path)
def _basic_excel_extract(self, file_path: Path) -> str:
"""Basic Excel extraction as fallback"""
try:
excel_file = pd.ExcelFile(file_path)
sheets_data = []
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(excel_file, sheet_name=sheet_name)
sheet_content = f"\nSheet: {sheet_name}\n"
sheet_content += "=" * (len(sheet_name) + 7) + "\n"
if df.empty:
sheet_content += "Empty Sheet\n"
else:
sheet_content += df.fillna('').to_string(
index=False,
max_rows=None,
max_cols=None,
line_width=120
) + "\n"
sheets_data.append(sheet_content)
return "\n\n".join(sheets_data)
except Exception as e:
raise Exception(f"Error in basic Excel processing: {str(e)}")
def _generate_metadata(
self,
file_path: Path,
content: str,
additional_metadata: Optional[Dict] = None
) -> Dict:
"""Generate comprehensive metadata"""
file_stat = file_path.stat()
metadata = {
'filename': file_path.name,
'file_type': file_path.suffix,
'file_size': file_stat.st_size,
'created_at': datetime.fromtimestamp(file_stat.st_ctime),
'modified_at': datetime.fromtimestamp(file_stat.st_mtime),
'content_hash': self._calculate_hash(content),
'mime_type': magic.from_file(str(file_path), mime=True),
'word_count': len(content.split()),
'character_count': len(content),
'processing_timestamp': datetime.now().isoformat()
}
# Add Excel-specific metadata if applicable
if file_path.suffix.lower() in ['.xlsx', '.xls']:
try:
if hasattr(self.excel_processor, 'get_metadata'):
excel_metadata = self.excel_processor.get_metadata()
metadata.update({'excel_metadata': excel_metadata})
except Exception as e:
logging.warning(f"Could not extract Excel metadata: {str(e)}")
if additional_metadata:
metadata.update(additional_metadata)
return metadata
def _calculate_hash(self, text: str) -> str:
"""Calculate SHA-256 hash of text"""
return hashlib.sha256(text.encode()).hexdigest()
async def process_document(self, file_path: Union[str, Path], metadata: Optional[Dict] = None) -> Dict:
"""Process a document with metadata and content extraction"""
file_path = Path(file_path)
if not self._validate_file(file_path):
raise ValueError(f"Invalid file: {file_path}")
content = self._extract_content(file_path)
doc_metadata = self._generate_metadata(file_path, content, metadata)
# Try enhanced splitting with validation
chunks = self.split_text(content)
if not self._validate_chunks(content, chunks):
logging.warning(
"Enhanced splitting failed validation, falling back to original splitter")
chunks = self.text_splitter.split_text(content)
# Add logging to verify chunk overlap
for i in range(len(chunks)-1):
logging.debug(f"Chunk {i} ends with: {chunks[i][-50:]}")
logging.debug(f"Chunk {i+1} starts with: {chunks[i+1][:50]}")
logging.debug(
f"Overlap size: {self._calculate_overlap_size(chunks[i], chunks[i+1])} characters")
chunk_hashes = [self._calculate_hash(chunk) for chunk in chunks]
return {
'content': content,
'chunks': chunks,
'chunk_hashes': chunk_hashes,
'metadata': doc_metadata,
'statistics': self._generate_statistics(content, chunks)
}
def _calculate_overlap_size(self, chunk1: str, chunk2: str) -> int:
"""Calculate the size of overlap between two chunks"""
min_len = min(len(chunk1), len(chunk2))
for i in range(min_len, 0, -1):
if chunk1[-i:] == chunk2[:i]:
return i
return 0
def _validate_file(self, file_path: Path) -> bool:
"""Validate file type, size, and content"""
if not file_path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
if file_path.suffix.lower() not in self.supported_formats:
raise ValueError(f"Unsupported file format: {file_path.suffix}")
if file_path.stat().st_size > self.max_file_size:
raise ValueError(f"File too large: {file_path}")
if file_path.stat().st_size == 0:
raise ValueError(f"Empty file: {file_path}")
return True
def _generate_statistics(self, content: str, chunks: List[str]) -> Dict:
"""Generate document statistics"""
return {
'total_chunks': len(chunks),
'average_chunk_size': sum(len(chunk) for chunk in chunks) / len(chunks),
'token_estimate': len(content.split()),
'unique_words': len(set(content.lower().split())),
'sentences': len([s for s in content.split('.') if s.strip()]),
}
async def batch_process(
self,
file_paths: List[Union[str, Path]],
parallel: bool = True
) -> Dict[str, Dict]:
"""Process multiple documents in parallel"""
results = {}
if parallel:
threads = []
for file_path in file_paths:
thread = threading.Thread(
target=self._process_and_store,
args=(file_path, results)
)
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
else:
for file_path in file_paths:
await self._process_and_store(file_path, results)
return results
async def _process_and_store(
self,
file_path: Union[str, Path],
results: Dict
):
"""Process a single document and store results"""
try:
result = await self.process_document(file_path)
results[str(file_path)] = result
except Exception as e:
results[str(file_path)] = {'error': str(e)}