chatbot-backend / src /agents /rag_agent.py
TalatMasood's picture
Log google drive documents in the mongodb, add source of the document and made chunks to overlap text.
acdfaa9
raw
history blame
10.8 kB
# src/agents/rag_agent.py
from typing import List, Optional, Tuple, Dict
import uuid
from .excel_aware_rag import ExcelAwareRAGAgent
from ..llms.base_llm import BaseLLM
from src.embeddings.base_embedding import BaseEmbedding
from src.vectorstores.base_vectorstore import BaseVectorStore
from src.utils.conversation_manager import ConversationManager
from src.db.mongodb_store import MongoDBStore
from src.models.rag import RAGResponse
from src.utils.logger import logger
from config.config import settings
class RAGAgent(ExcelAwareRAGAgent):
def __init__(
self,
llm: BaseLLM,
embedding: BaseEmbedding,
vector_store: BaseVectorStore,
mongodb: MongoDBStore,
max_history_tokens: int = 4000,
max_history_messages: int = 10
):
"""
Initialize RAG Agent
Args:
llm (BaseLLM): Language model instance
embedding (BaseEmbedding): Embedding model instance
vector_store (BaseVectorStore): Vector store instance
mongodb (MongoDBStore): MongoDB store instance
max_history_tokens (int): Maximum tokens in conversation history
max_history_messages (int): Maximum messages to keep in history
"""
super().__init__() # Initialize ExcelAwareRAGAgent
self.llm = llm
self.embedding = embedding
self.vector_store = vector_store
self.mongodb = mongodb
self.conversation_manager = ConversationManager(
max_tokens=max_history_tokens,
max_messages=max_history_messages
)
def _extract_markdown_section(self, docs: List[str], section_header: str) -> str:
"""Extract complete section content from markdown documents"""
combined_text = '\n'.join(docs)
section_start = combined_text.find(section_header)
if section_start == -1:
return ""
next_section = combined_text.find(
"\n\n**", section_start + len(section_header))
if next_section == -1:
section_content = combined_text[section_start:]
else:
section_content = combined_text[section_start:next_section]
return self._clean_markdown_content(section_content)
def _clean_markdown_content(self, content: str) -> str:
"""Clean and format markdown content"""
lines = content.split('\n')
seen_lines = set()
cleaned_lines = []
for line in lines:
# Always keep headers and table formatting
if '| :----' in line or line.startswith('**'):
if line not in seen_lines:
cleaned_lines.append(line)
seen_lines.add(line)
continue
# Keep table rows and list items
if line.strip().startswith('|') or line.strip().startswith('-'):
cleaned_lines.append(line)
continue
# Remove duplicates for other content
stripped = line.strip()
if stripped and stripped not in seen_lines:
cleaned_lines.append(line)
seen_lines.add(stripped)
return '\n'.join(cleaned_lines)
async def generate_response(
self,
query: str,
conversation_id: Optional[str],
temperature: float,
max_tokens: Optional[int] = None,
context_docs: Optional[List[str]] = None
) -> RAGResponse:
"""Generate response with improved markdown and conversation handling"""
try:
# Handle introduction/welcome message queries
is_introduction = (
"wants support" in query and
"This is Introduction" in query and
("A new user with name:" in query or "An old user with name:" in query)
)
if is_introduction:
welcome_message = self._handle_contact_query(query)
return RAGResponse(
response=welcome_message,
context_docs=[],
sources=[],
scores=None
)
# Get conversation history if conversation_id exists
history = []
if conversation_id:
history = await self.mongodb.get_recent_messages(
conversation_id,
limit=self.conversation_manager.max_messages
)
history = self.conversation_manager.get_relevant_history(
messages=history,
current_query=query
)
# Retrieve context if not provided
if not context_docs:
context_docs, sources, scores = await self.retrieve_context(
query=query,
conversation_history=history
)
else:
sources = None
scores = None
# Special handling for markdown section queries
if "DISCUSSIONS AND ACTION ITEMS" in query.upper():
section_content = self._extract_markdown_section(
context_docs,
"**DISCUSSIONS AND ACTION ITEMS**"
)
if section_content:
return RAGResponse(
response=section_content.strip(),
context_docs=context_docs,
sources=sources,
scores=scores
)
# Check if we have any relevant context
if not context_docs:
return RAGResponse(
response="Information about this is not available, do you want to inquire about something else?",
context_docs=[],
sources=[],
scores=None
)
# Generate prompt with context and history
augmented_prompt = self.conversation_manager.generate_prompt_with_history(
current_query=query,
history=history,
context_docs=context_docs
)
# Generate response
response = self.llm.generate(
prompt=augmented_prompt,
temperature=temperature,
max_tokens=max_tokens
)
# Clean the response
cleaned_response = self._clean_response(response)
# Return the final response
return RAGResponse(
response=cleaned_response,
context_docs=context_docs,
sources=sources,
scores=scores
)
except Exception as e:
logger.error(f"Error in RAGAgent: {str(e)}")
raise
def _create_response_prompt(self, query: str, context_docs: List[str]) -> str:
"""
Create prompt for generating response from context
Args:
query (str): User query
context_docs (List[str]): Retrieved context documents
Returns:
str: Formatted prompt for the LLM
"""
if not context_docs:
return f"Query: {query}\nResponse: Information about this is not available, do you want to inquire about something else?"
# Format context documents
formatted_context = "\n\n".join(
f"Context {i+1}:\n{doc.strip()}"
for i, doc in enumerate(context_docs)
if doc and doc.strip()
)
# Build the prompt with detailed instructions
prompt = f"""You are a knowledgeable assistant. Use the following context to answer the query accurately and informatively.
Context Information:
{formatted_context}
Query: {query}
Instructions:
1. Base your response ONLY on the information provided in the context above
2. If the context contains numbers, statistics, or specific details, include them in your response
3. Keep your response focused and relevant to the query
4. Use clear and professional language
5. If the context includes technical terms, explain them appropriately
6. Do not make assumptions or add information not present in the context
7. If specific sections of a report are mentioned, maintain their original structure
8. Format the response in a clear, readable manner
9. If the context includes chronological information, maintain the proper sequence
Response:"""
return prompt
async def retrieve_context(
self,
query: str,
conversation_history: Optional[List[Dict]] = None
) -> Tuple[List[str], List[Dict], Optional[List[float]]]:
"""
Retrieve context with conversation history enhancement
"""
# Enhance query with conversation history
if conversation_history:
recent_queries = [
msg['query'] for msg in conversation_history[-2:]
if msg.get('query')
]
enhanced_query = " ".join([*recent_queries, query])
else:
enhanced_query = query
# Debug log the enhanced query
logger.info(f"Enhanced query: {enhanced_query}")
# Embed the enhanced query
query_embedding = self.embedding.embed_query(enhanced_query)
# Debug log embedding shape
logger.info(f"Query embedding shape: {len(query_embedding)}")
# Retrieve similar documents
results = self.vector_store.similarity_search(
query_embedding,
top_k=settings.TOP_CHUNKS
)
# Debug log search results
logger.info(f"Number of search results: {len(results)}")
for i, result in enumerate(results):
logger.info(f"Result {i} score: {result.get('score', 'N/A')}")
logger.info(
f"Result {i} text preview: {result.get('text', '')[:100]}...")
# Process results
documents = [doc['text'] for doc in results]
sources = [self._convert_metadata_to_strings(doc['metadata'])
for doc in results]
scores = [doc['score'] for doc in results
if doc.get('score') is not None]
# Return scores only if available for all documents
if len(scores) != len(documents):
scores = None
return documents, sources, scores
def _convert_metadata_to_strings(self, metadata: Dict) -> Dict:
"""Convert numeric metadata values to strings"""
converted = {}
for key, value in metadata.items():
if isinstance(value, (int, float)):
converted[key] = str(value)
else:
converted[key] = value
return converted